

3-Channel IoSmart™ LoadSwitch

Product Specification

DESCRIPTION

The GLF78131 / GLF78131T is an ultra-efficienct, I_QSmart^{TM} LoadSwitch with three independent and identical load switches integrated. Each load switch features an ultra-efficient I_QSmart^{TM} technology that supports some of the lowest quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

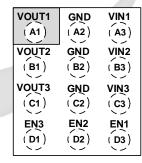
The GLF78131 / GLF78131T integrated slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush current that result in voltage droop and/or bus reset events, the slew rate control specifically limits inrush current during turn-on to minimize voltage droop.

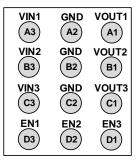
The GLF78131 / GLF78131T Load Switch device supports an industry leading wide input voltage range and helps to improve operating life and system robustness. Furthermore, one device can be used in multiple voltage rail applications which helps to simplify inventory management and reduces operating cost.

The GLF78131 / GLF78131T is utilizing a wafer level chip scale package with 12 bumps in a 1.27 mm x 1.67 mm die size and a 0.4 mm bump pitch. The GLF78131T is ultra-thin. Its thickness is 0.35 mm Typ, 0.4 mm Max.

FEATURES

- Each Channel is identical
- Ultra-Low I_Q: 6 nA Typ @ 5.5 V_{IN}
- Ultra-Low I_{SD}: 23 nA Typ @ 5.5 V_{IN}
- Low $R_{ON} = 60 \text{ m}\Omega \text{ Typ } @ 5.5 \text{ V}_{IN}$
- I_{OUT} Max = 1.5 A
- Supply Voltage Range: 1.1 V to 5.5 V

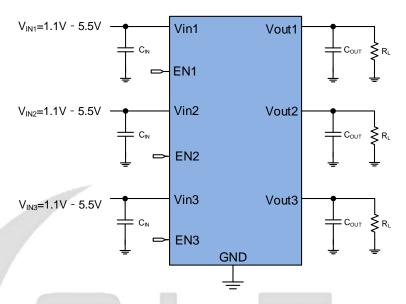

6 V abs max


- Controlled Rise Time: 500 µs at 3.3 V_{IN}
- Internal EN Pull-Down Resistor
- Integrated Output Discharge Switch
- Temperature Range: -40 to 85 °C
- HBM: 6 kV, CDM: 2 kV

APPLICATIONS

- Low Power Subsystems
- Thin Mobile Devices & Wearables
- IoT Devices

PACKAGE



TOP VIEW

BOTTOM VIEW

GLF78131 : 1.27 mm x 1.67 mm x 0.55 mm GLF78131T : 1.27 mm x 1.67 mm x 0.35 mm

APPLICATION DIAGRAM

ALTERNATE DEVICE OPTIONS

Part Number	Top Mark	R _{ON} (Typ) at 5.5 V	Output Discharge(Typ)	EN Activity	Package Thickness	Availability
GLF78131	TA	60 mΩ	225 Ω	High	T=0.55 mm	Release
GLF78131T	AP	60 mΩ	225 Ω	High	T=0.35 mm	On Request

FUNCTIONAL BLOCK DIAGRAM (Each Channel is identical)

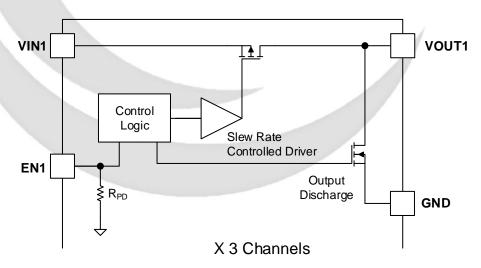
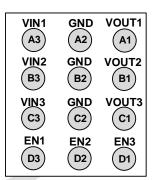



Figure 1. Functional Block Diagram of Single Channel

3-Channel I_QSmart[™] LoadSwitch

PIN CONFIGURATION

VOUT1 GND VIN1 (A2) (A1) (A3) VOUT2 **GND** VIN2 (B1) (B2) (B3) VOUT3 GND VIN3 (C1) (C2) (C3) EN3 EN₂ EN1 (D1) (D2) (D3)

TOP VIEW

BOTTOM VIEW

Figure 2. 1.27 mm x 1.67 mm x 0.5 mm WLCSP 1.27 mm x 1.67 mm x 0.35 mm Ultra-Thin WLCSP

PIN DEFINITION

Pin#	Name	Description
A1	VOUT1	Switch Output
A2	GND	Ground
А3	VIN1	Switch Input
B1	VOUT2	Switch Output
B2	GND	Ground
В3	VIN2	Switch Input
C1	VOUT3	Switch Output
C2	GND	Ground
C3	VIN3	Switch Input
D1	EN3	Enable to control the switch. There is an internal pull-down resistor.
D2	EN2	Enable to control the switch. There is an internal pull-down resistor.
D3	EN1	Enable to control the switch. There is an internal pull-down resistor.

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	P	Min.	Max.	Unit	
V _{IN} Pins, V _{OUT} Pins, EN	Each Pin Voltage Range to GND	-0.3	6	V	
Іоит	Maximum Continuous Switch Curr	/	1.5	Α	
PD	Power Dissipation at T _A = 25°C		TBD	W	
Tstg	Storage Junction Temperature			150	°C
TA	Operating Temperature Range			85	°C
θја	Thermal Resistance, Junction to Ambient (1 in² pad of 2 oz. copper using 2S2P PCB)			84	°C/W
ESD	Electrostatic Discharge Capability	Human Body Model, JESD22-A114	6		kV
E3D	Liectrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		N.V

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max.	Unit
Vin	Supply Voltage	1.1	5.5	V
TA	Ambient Operating Temperature	-40	+85	°C

ELECTRICAL CHARACTERISTICS OF SINGLE CHANNEL (Each Channel is identical)

Values are at V_{IN} = 3.3 V and T_{A} = 25 °C unless otherwise noted.

Symbol	Parameter	Condition	s	Min.	Тур.	Max.	Unit	
Basic Ope	eration				1			
VIN	Supply Voltage			1.1		5.5	V	
		EN = Enable, I _{OUT} = 0 mA, V _{IN} = V _{EN} = 5.5 V			6	20		
I _Q Quiescent Current		EN = Enable, $I_{OUT} = 0$ mA, V_{IN} 85 °C ⁽⁴⁾	= V _{EN} = 5.5 V, Ta =		12		nA	
		EN = Disable, I _{OUT} = 0 mA, V _{IN}	ı= 1.1 V		3			
		EN = Disable, lout = 0 mA, Vin	ı= 1.8 V		4		1	
		EN = Disable, lout = 0 mA, Vin	ı= 3.3 V		6		1	
		EN = Disable, I _{OUT} = 0 mA, V _{IN}	ı = 4.5 V		11		nA	
I_{SD}	Shut Down Current	EN = Disable, I _{OUT} = 0 mA, V _{IN}	ı= 5.5 V		23	50] '"`	
		EN = Disable, I _{OUT} = 0 mA, V _{IN}	= 5.5 V, Ta = 55 °C		100			
		EN = Disable, I _{OUT} = 0 mA, V _{IN}	= 5.5 V, Ta = 85 °C		530			
		V _{IN} = 5.5 V, I _{OUT} = 500 mA	Ta = 25 °C		60	70		
			Ta = 85 °C (4)		75		1	
Ron	On-Resistance		Ta = 25 °C		70	80	1	
		$V_{IN} = 3.3 \text{ V, } I_{OUT} = 500 \text{ mA}$ $Ta = 85 ^{\circ}\text{C}^{(4)}$		0	85	- R	mΩ	
		V _{IN} = 1.8 V, I _{OUT} = 300 mA	Ta = 25 °C		95			
		V _{IN} = 1.2 V, I _{OUT} = 100 mA	Ta = 25 °C		150			
		V _{IN} = 1.1 V, I _{OUT} = 100 mA	Ta = 25 °C		165			
Rosc	Output Discharge Resistance	E _N = Low , I _{FORCE} = 10 mA		/	235		Ω	
W	EN Input Logic High	V _{IN} = 1.1 V to 1.8 V		0.9			V	
V_{IH}	Voltage	V _{IN} = 1.8 V to 5.5 V		1.2			V	
VIL	EN Input Logic Low Voltage	$V_{IN} = 1.1 \text{ V to } 1.8 \text{ V}$				0.3	V	
VIL	Liv input Logic Low Voltage	$V_{IN} = 1.8 \text{ V to } 5.5 \text{ V}$				0.4	V	
Ren	EN pull down resistance	Internal Resistance		7	10.1	13	МΩ	
I _{EN}	EN Current	$E_N = 5.5 \text{ V}$				0.75	μΑ	
Switching	Characteristics							
t _{dON}	Turn-On Delay ⁽¹⁾	- R _L = 10 Ω, C _{OUT} = 0.1 μF			320			
t _R	V _{OUT} Rise Time ⁽¹⁾	10 11, 0001 — 0.1 рг	NL= 10 Ω, COUT = 0.1 μΓ		500		μs	
t _{dOFF}	Turn-Off Delay ^(2,3,4)	$R_L = 10 \ \Omega, \ C_{OUT} = 0.1 \ \mu F$			0.6			
t _F	Vout Fall Time(2,3,4)	π. – 10 22, 0001 – 0.1 μι			2.1		1	

Notes:

- 1. $t_{ON} = t_{dON} + t_{R}$
- 2. $t_{OFF} = t_{dOFF} + t_F$
- 3. Output discharge path is enabled during off.
- 4. By design; characterized; not production tested.

TIMING DIAGRAM

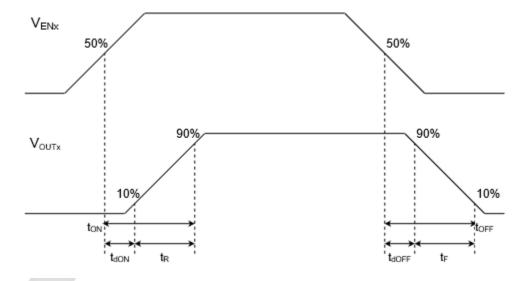
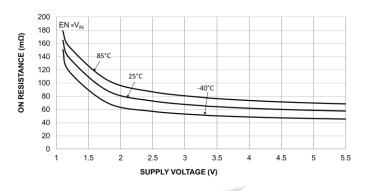



Figure 3. Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

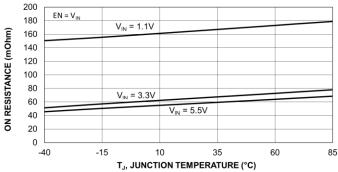


Figure 4. On-Resistance vs. Supply Voltage

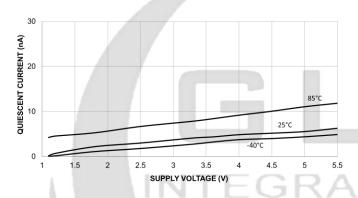


Figure 5. On-Resistance vs. Temperature

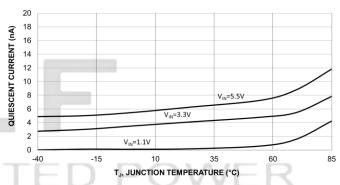


Figure 6. Quiescent Current vs. Supply Voltage

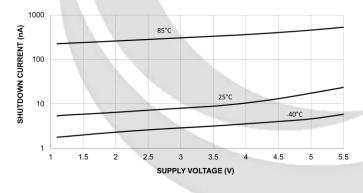


Figure 7. Quiescent Current vs. Temperature

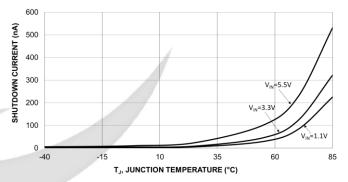
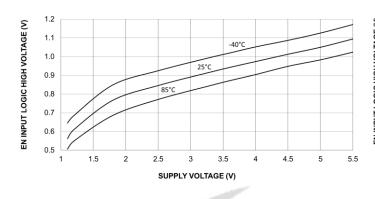



Figure 8. Shutdown Current vs. Supply Voltage

Figure 9. Shutdown Current vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

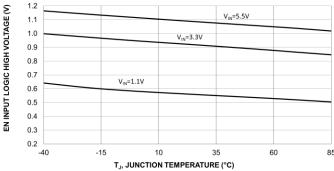


Figure 10. EN Input Logic High Threshold

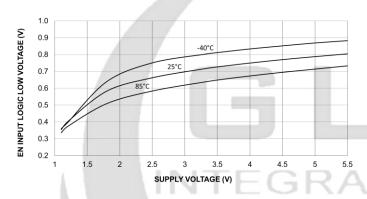


Figure 11. EN Input Logic High Threshold Vs. Temperature

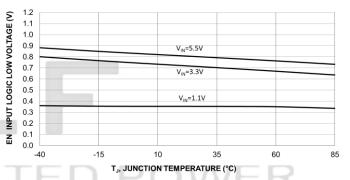


Figure 12. EN Input Logic Low Threshold

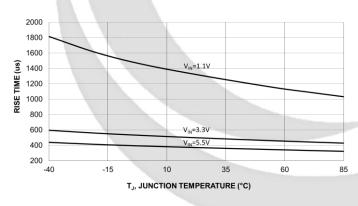


Figure 13. EN Input Logic Low Threshold Vs. Temperature

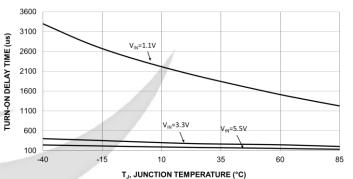
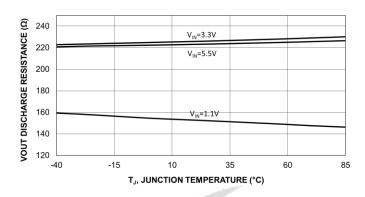



Figure 14. Vout Rise Time vs. Temperature

Figure 15. Turn-On Delay Time vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

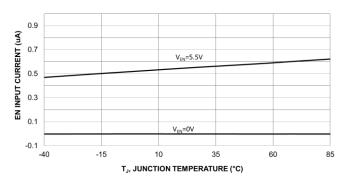


Figure 16. VOUT Discharge Resistance vs. Temperature

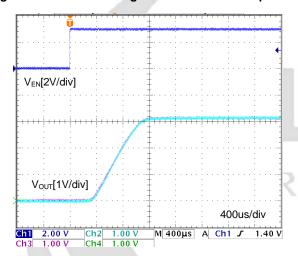


Figure 18. Turn-On Response $V_{\text{IN}} = 3.3 \text{ V, } C_{\text{IN}} = C_{\text{OUT}} = 0.1 \ \mu\text{F, } R_{\text{L}} = 10 \ \Omega$

Figure 17. Enable Input Current vs. Temperature

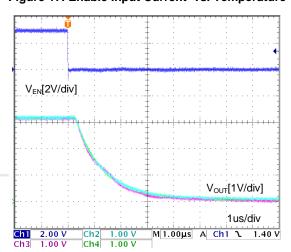


Figure 19. Turn-Off Response $V_{IN} = 3.3 \ V, \ C_{IN} = C_{OUT} = 0.1 \ \mu F, \ R_L = 10 \ \Omega$

3-Channel I_QSmart[™] LoadSwitch

APPLICATION INFORMATION

The GLF78131 / GLF78131T is an ultra-efficiency, I_QSmartTM LoadSwitch with three independent and identical load switches integrated. Each device is capable of operating over a wide input range from 1.1 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save input power.

Input Capacitor

A 0.1 μ F capacitor is recommended to be placed close to each V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

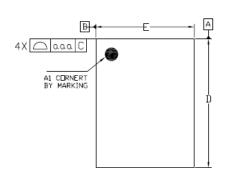
Output Capacitor

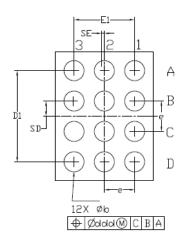
A 0.1 µF output capacitor is recommended to mitigate voltage undershoot on the output pin the moment when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductance. If load inductance does exist, use of an output capacitor can improve output voltage stability and system reliability. The Cout capacitor should be placed close to the VOUT and GND pins.

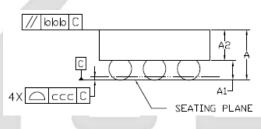
EN pin

The GLF78131 and GLF78131T can be activated by EN pin high level. Note that each EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

Output Discharge Function

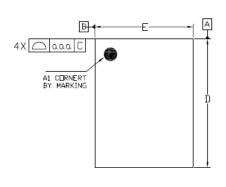

The GLF78131 and GLF78131T have an internal discharge N-channel FET switch on each VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.

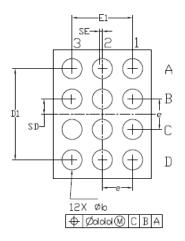

Board Layout

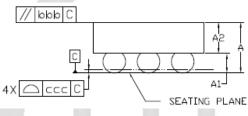

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce voltage drops and parasitic effects during dynamic operation as well as improve the thermal performance at high load current.

PACKAGE OUTLINE (GLF78131)

Dimensional Ref.								
REF.	Min.	Nom.	Max.					
Α	0.500	0.550	0.600					
Α1	0.175	0.200	0.225					
A2	0.325	0.350	0.375					
D	1.655	1.670	1.685					
E	1.255	1.270	1.285					
D1	1.150	1.200	1.250					
E1	0.750	0.800	0.850					
Ь	0.215	0.265	0.315					
е	0	.400 BS	C					
SD	0	.200 BS	C					
SE	0	.000 BS	C					
To	ol. of Fo	rm&Pos	sition					
999	0.10							
bbb	0.10							
CCC	0.05							
ddd		0.05						


KATED POWER

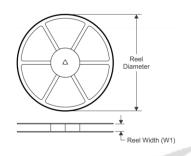

Notes

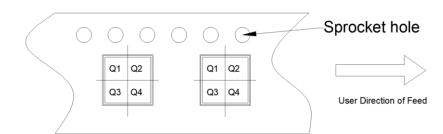

- 1, ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES),
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

PACKAGE OUTLINE (GLF78131T)

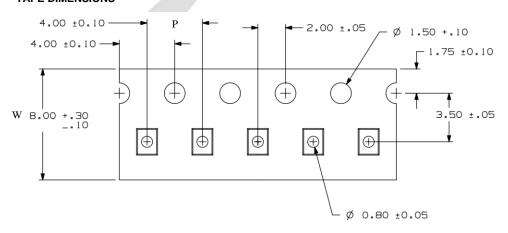
		Dimens	ional R	ef.				
	REF.	Min.	Nom.	Max.				
	Α	0.300	0.350	0.400				
	Α1	0.075	0.100	0.125				
N	A2	0.225	0.250	0.275				
		1.655	1.670	1.685				
	Е	1.255	1.270	1.285				
	D1	1.150	1.200	1.250				
	E1	0.750	0.800	0.850				
Ų	Ь	0.200	0.230	0.260				
	9	0	.400 BS	C				
	SD	0	.200 BS	٤				
	SE	0	.000 BS	(
	Τe	ol. of Form&Position						
•	999	0.10						
	bbb	0.10						
	CCC		0.05					
	ddd		0.05					

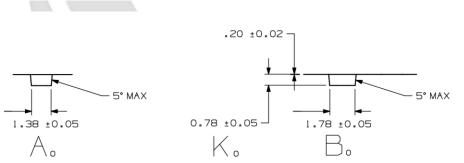
Notes


- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.



TAPE AND REEL INFORMATION


REEL DIMENSIONS


QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	Α0	В0	КО	Р	w	Pin1
GLF78131	WLCSP	12	3000	180	9	1.38	1.78	0.78	4	8	Q1
GLF78131T	WLCSP	12	3000	180	9	1.38	1.78	0.78	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

3-Channel I_QSmart[™] LoadSwitch

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application.

In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.