

Product Specification

DESCRIPTION

The GLF71301T is an ultra-efficiency, 2.0 A rated, Load Switch with integrated slew rate control. The best in class efficiency makes it an ideal choice for use in IoT, mobile, and wearable electronics.

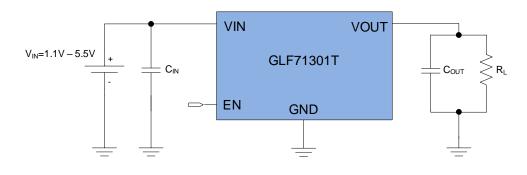
The GLF71301T features an ultra-efficient I_QSmart^{TM} technology that supports the lowest quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The GLF71301T integrated slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF slew rate control specifically limits inrush current during turn-on to minimize voltage droop.

GLF71301T Load Switch device supports an industry leading wide input voltage range and helps to improve operating life and system robustness. Furthermore, one device can be used in multiple voltage rail applications which helps to simplify inventory management and reduces operating cost.

GLF71301T Load Switch device is small utilizing a wafer level chip scale package with 4 bumps in a 0.77 mm x 0.77 mm x 0.35 mm die size and a 0.4 mm bump pitch.

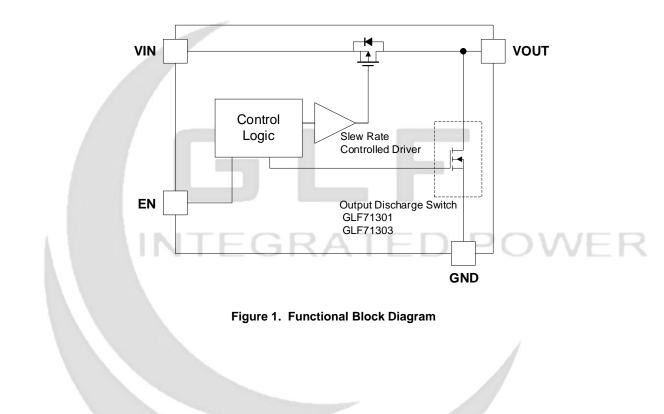
FEATURES

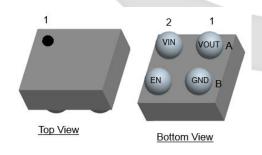

- Ultra-Low I_Q: 1 nA Typ @ 5.5 V_{IN}
- Ultra-Low I_{SD}: 19 nA Typ @ 5.5 V_{IN}
- Low R_{ON} = 34 mΩ Typ. @ 5.5 V_{IN}
- IOUT Max = 2.0 A
- Supply Voltage Range: 1.1 V to 5.5 V 6 V abs max
- Controlled Rise Time: 430 us at 3.3 V_{IN}
- Internal EN Pull-Down Resistor
- Integrated Output Discharge Switch
- Ultra-Small: 0.77 mm x 0.77 mm

APPLICATIONS

- Wearables
- Data Storage, SSD
- Mobile Devices
- Low Power Subsystems

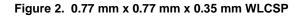
APPLICATION DIAGRAM




ALTERNATE DEVICE OPTIONS

Part Number	Top Mark	R₀ℕ (Typ) at 5.5 V	Output Discharge	EN Activity	Availability	
GLF71301T	В	34 mΩ	85 Ω	High	Released	

FUNCTIONAL BLOCK DIAGRAM



PIN CONFIGURATION

	Pin #	Name	Description
	A1	Vout	Switch Output
	A2 VIN B1 GND B2 EN		Switch Input. Supply Voltage for IC
			Ground
			Enable to control the switch

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	P	Min.	Max.	Unit	
Vin, Vout, Ven	I, Vo⊔T, VEN Each Pin Voltage Range to GND				V
Ιουτ	Maximum Continuous Switch Curre	nt		2	А
Po	Power Dissipation at $T_A = 25 \text{ °C}$			1	W
T _{STG}	Storage Junction Temperature		-65	150	°C
TA	Operating Temperature Range		-40	85	°C
θ _{JA}	Thermal Resistance, Junction to An	nbient (board dependent)		110	°C/W
F0D		Human Body Model, JESD22-A114	6		
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		kV

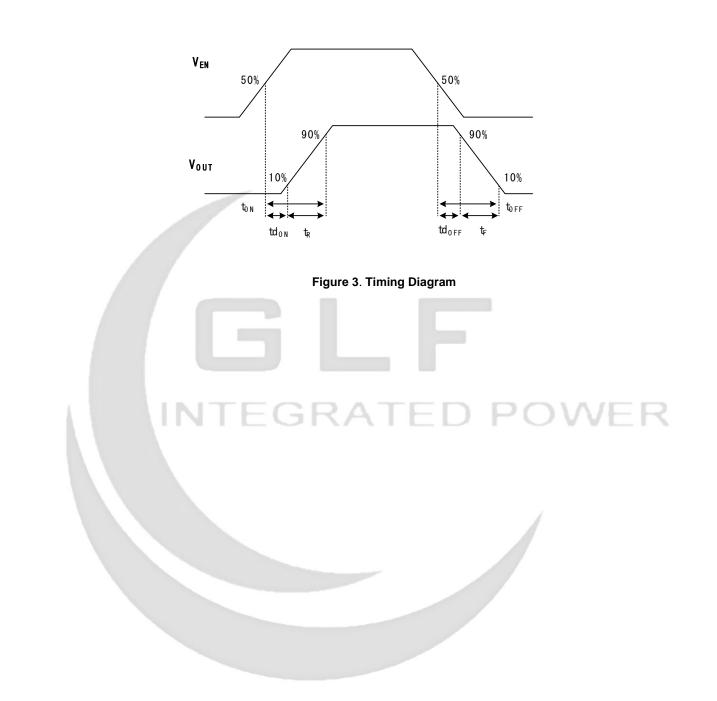
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	1.1	5.5	V
TA	Ambient Operating Temperature	-40	+85	°C
	INTEGRATED P	ΟV	/EI	R

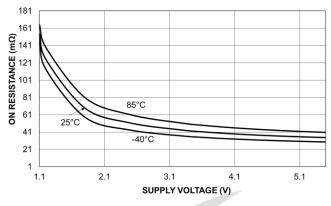
ELECTRICAL CHARACTERISTICS

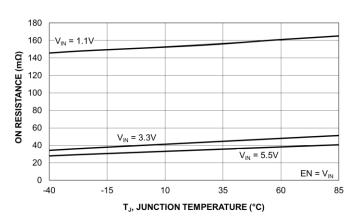
Values are at V_{IN} = 3.3 V and T_{A} = 25 °C unless otherwise noted.

Symbol	Parameter	Condition	าร	Min.	Тур.	Max.	Unit
Basic Ope	eration						
VIN	Supply Voltage			1.1		5.5	V
		EN = Enable, Iout=0 mA, VIN = V	√ _{en} =5.5 V		1		
lq	Quiescent Current	EN = Enable, I _{OUT} =0 mA, V _{IN} =V _E	_{EN} =5.5 V, Ta=85 °C ⁽⁴⁾		7		nA
		EN = Disable, Iout=0 mA, VIN=1	.1 V		3		
		EN = Disable, I _{OUT} =0 mA, V _{IN} =1.8 V			4		-
		EN = Disable, Iout=0 mA, VIN=3	.3 V		6		1.
Isd	Shutdown Current	EN = Disable, Iout=0 mA, VIN=4	.5 V		9		nA
		EN = Disable, Iout=0 mA, VIN=5	.5 V		19	50	-
		EN = Disable, Iout=0 mA, VIN=5	.5 V, Ta=55 °C ⁽⁴⁾		110		
		EN = Disable, Iout=0 mA, VIN=5	.5 V, Ta=85 °C ⁽⁴⁾		600		
			Ta=25 °C		34	47	
	On-Resistance	V _{IN} =5.5 V, I _{OUT} = 500 mA Ta	Ta=85 °C (4)		40		1
		V _{IN} =3.3 V, I _{OUT} = 500 mA	Ta=25 °C		42	56	1
R _{ON}			Ta=85 °C (4)		50		mΩ
		VIN=1.8 V, IOUT= 300 mA	Ta=25 °C		68		1
		V _{IN} =1.2 V, I _{OUT} = 100 mA	Ta=25 °C		125	_	
	IN	V _{IN} =1.1 V, I _{OUT} = 100 mA	Ta=25 °C	\bigcirc	155		<u>.</u>
R _{DSC}	Output Discharge Resistance	E _N =Low , I _{FORCE} = 10 mA		70	85	100	Ω
N	EN Input Logic High	V _{IN} =1.1 V - 1.8 V		0.9			V
Vін	Voltage	V _{IN} =1.8 V - 5.5 V					V
N/	EN Input Logic Low	V _{IN} =1.1 V - 1.8 V				0.3	V
VIL	Voltage	V _{IN} =1.8 V - 5.5 V				0.4	V
Ren	EN pull down resistance	Internal Resistance		7	10.1	13	MΩ
I _{EN}	EN Current	E _N =5.5 V				0.8	μA
Switching	Characteristics						
t _{dON}	Turn-On Delay ⁽¹⁾	D 450 0 0 04 HE			275		
t _R	V _{OUT} Rise Time ⁽¹⁾	R _L =150 Ω, C _{OUT} =0.1 μF			430		1
t _{dON}	Turn-On Delay ^(1,4)				245		
t _R	Vout Rise Time ^(1,4)	− R _L =500 Ω, C _{OUT} =0.1 μF			410		
t_{dOFF}	Turn-Off Delay ^(2,3,4)				0.38		μs
tF	Vout Fall Time ^(2,3,4)	R _L =10 Ω, C _{OUT} =0.1 μF			1.32		
t_{dOFF}	Turn-Off Delay ^(2,3,4)	- R _L =500 Ω, C _{OUT} =0.1 μF			1.1		
tF	Vout Fall Time ^(2,3,4)	$112-300 22, 0007=0.1 \mu F$			18		

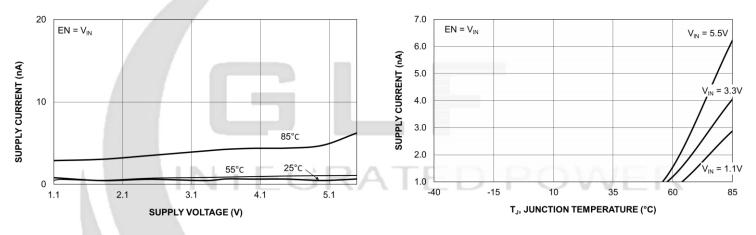

Notes:

1. $t_{ON} = t_{dON} + t_R$


torF = t_{dOFF} + t_F
Output discharge path is enabled during off.
By design; characterized; not production tested.



TIMING DIAGRAM


TYPICAL PERFORMANCE CHARACTERISTICS

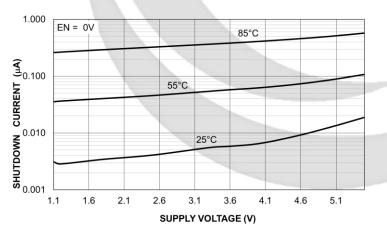
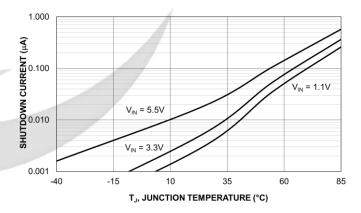
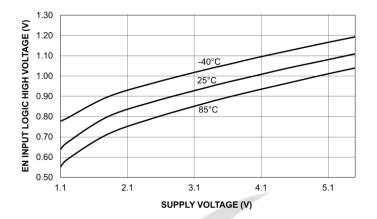
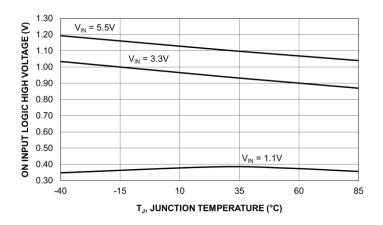
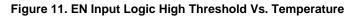
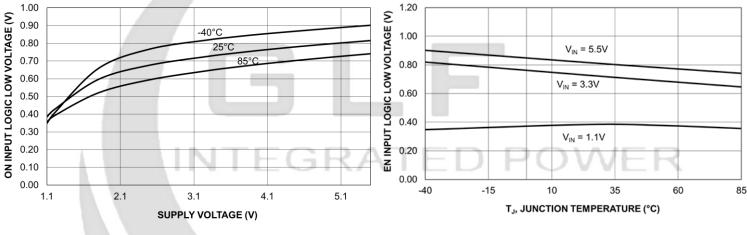


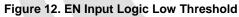
Figure 8. Shutdown Current vs. Supply Voltage

Figure 7. Quiescent Current vs. Temperature




Figure 9. Shutdown Current vs. Temperature



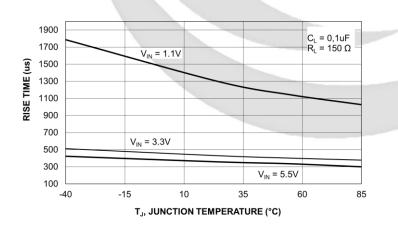


Figure 14. VOUT Rise Time vs. Temperature

Figure 13. EN Input Logic Low Threshold Vs. Temperature

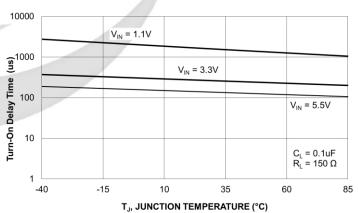


Figure 15. Turn-On Delay Time vs. Temperature

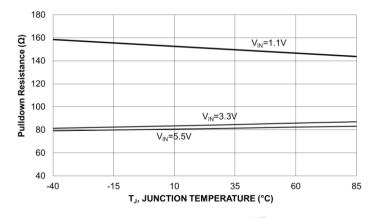


Figure 16. Pulldown Resistance vs. Temperature

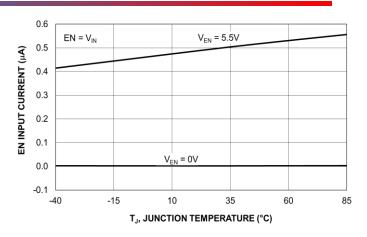


Figure 17. Enable Input Current vs. Temperature

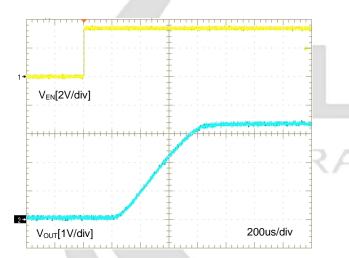
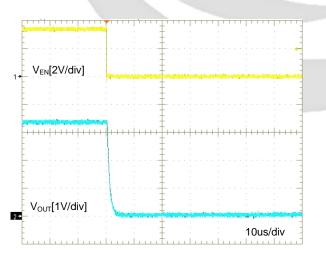
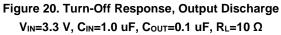




Figure 18. Turn-On Response VIN=3.3 V, CIN=1.0 uF, COUT=0.1 uF, RL=10 Ω

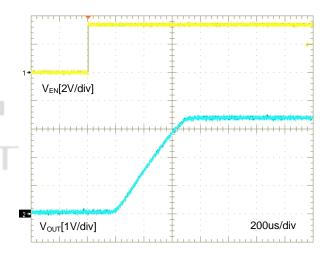
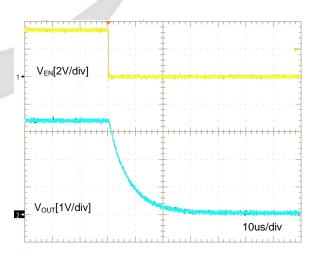



Figure 19. Turn-On Response VIN=3.3 V, CIN=1.0 uF, COUT=0.1 uF, RL=500 Ω

APPLICATION INFORMATION

The GLF71301T is an integrated 2.0 A, Ultra-Efficient I_QSmart[™] LoadSwitch device with a fixed slew rate control to limit the inrush current during turn on. The GLF71301T operates over a wide input range from 1.1 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power. The package is a 0.77 mm x 0.77 mm x 0.35 mm wafer level chip scale package, saving space in compact applications. It is constructed using 4 bumps, with a 0.4 mm pitch for manufacturability.

Input Capacitor

A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

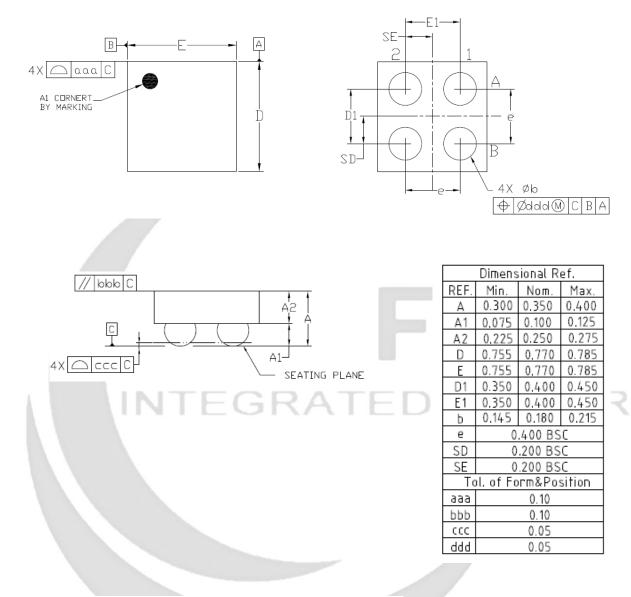
Output Capacitor

The use of an output capacitor is recommended to mitigate voltage undershoot on the output pin when the switch is turning off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be spaced close to the VOUT and GND pins.

EN pin

The GLF71301T can be activated by EN pin high level. Note that the EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

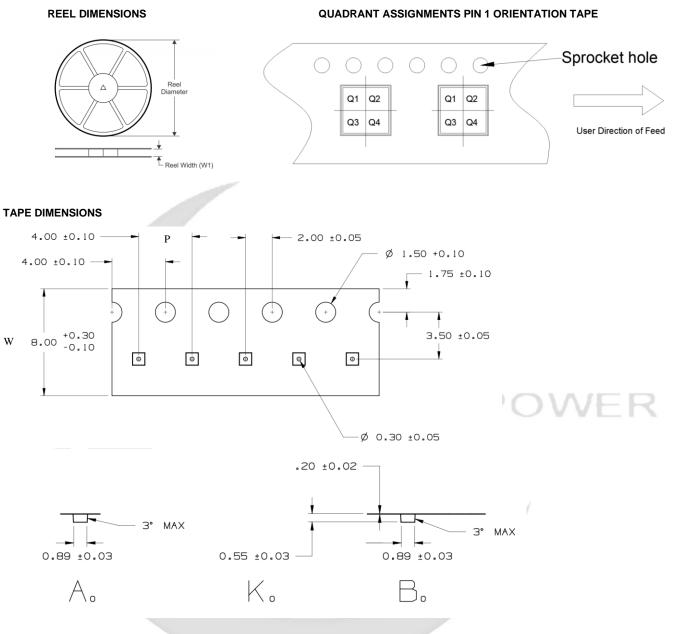
Output Discharge Function


The GLF71301T has an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.

Board Layout

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce voltage drops and parasitic effects during dynamic operation as well as improve the thermal performance at high load current.

ULTRA-THIN PACKAGE OUTLINE



<u>Notes</u>

- 1. AU DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

TAPE AND REEL INFORMATION

INTEGRATED POWER

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	A0	В0	К0	Ρ	w	Pin1
GLF71301T	WLCSP	4	4000	180	9	0.89	0.89	0.55	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.