

GLF72120, GLF72122

4 A, Slew Rate Controlled I_QSmart[™] Load Switch with True Reverse Current Blocking

Product Specification

DESCRIPTION

The GLF72120 and GLF72122 are an advanced technology fully integrated I_QSmart^{TM} load switch device with True Reverse Current Blocking (TRCB) technology and the slew rate control of the output voltage.

The GLF72120 and GLF72122 offer industry leading True Reverse Current Blocking (TRCB) performance, featuring an ultra-low threshold voltage. It minimizes reverse current flow in the event that the VOUT pin voltage exceeds the VIN voltage.

The GLF72120 and GLF72122 have industry leading efficiency. It features a 14 m Ω R_{ON} typical at 5.5 V, reducing power loss during conduction. The device also features ultra-low shutdown current (I_{SD}) to reduce power loss and battery drain in the off state. When EN is pulled low, and the output is grounded, the GLF72120 and GLF72122 can achieve an I_{SD} as low as 56 nA typical at 5.5 V.

The GLF72120 and GLF72122 load switch device support an industry leading wide input voltage range and helps to improve operating life and system robustness. Furthermore, one device can be used in multiple voltage rail applications which helps to simplify inventory management and reduces operating cost.

The GLF72120 and GLF72122 load switch device are in a 0.97 mm x 1.47 mm x 0.55 mm chip scale package with 6 bumps and a 0.5 mm pitch.

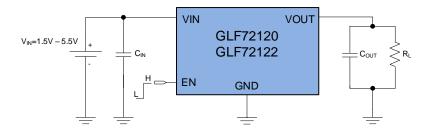
FEATURES

- True Reverse Current Blocking
- Low R_{ON}: 14 mΩ Typ at 5.5 V_{IN}
- Ultra-Low I_Q: 1.3 μA Typ at 5.5 V_{IN}
- Ultra-Low I_{SD}: 56 nA Typ at 5.5 VIN
- I_{OUT} Max: 4 A
- Supply Voltage Range: 1.5 V to 5.5 V
 - 6 Vabs max
- Controlled V_{OUT} Rise Time
 - GLF72120: 730 μs at 3.3 V_{IN}
 - GLF72122: 2000 µs at 3.3 V_{IN}
- Internal EN Pull-Down Resistor
- 0.97 mm x 1.47 mm x 0.55 mm Wafer Level Chip Scale Package

APPLICATIONS

- Mobile Devices
- Wearables
- Low Power Subsystems

PACKAGE



0.97 mm x 1.47 mm x 0.55 mm, 0.5 mm Pitch

APPLICATION DIAGRAM

DEVICE INFORMATION

Part Number	Top Mark	V _{OUT} Rising Time, Tr Typ [μs] at 3.3 V _{IN}	EN Activity	Tape and Reel Packaging
GLF72120	RA	730	Lliab	3000 Pieces
GLF72122	RC	2000	High	on 7 inch reel

FUNCTIONAL BLOCK DIAGRAM

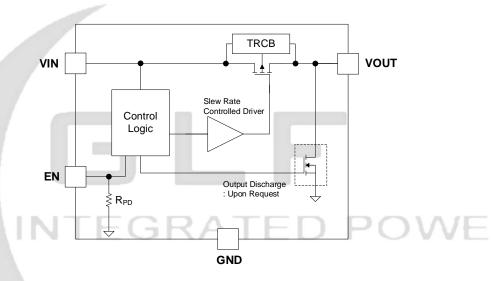


Figure 1. Functional Block Diagram

PIN CONFIGURATION

PIN DEFINITION

VOUT	VIN	VIN	VOUT			
	A2)	(A2)	(A1)	Pin#	Name	Description
	VÍN	VIN	VOUT	A1,B1	Vouт	Switch Output
	B2)	(B2)	(B1)	A2,B2	VIN	Switch Input. Supply Voltage
	EN	EN	GND	C1	GND	Ground
(C1) (C2)	(C2)	(C1)	C2	EN	Enable to control the switch
TOP VIEV	'	вотто	M VIEW			

Figure 2. 0.97 mm x 1.47 mm x 0.55 mm WLCSP

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Min.	Max.	Unit	
VIN, VOUT, VEN	Each Pin Voltage Range to GNF	-0.3	6	V	
I _{OUT}	Maximum Continuous Switch Curre	nt		4	Α
PD	Power Dissipation at T _A = 25 °C		1.2	W	
T _{STG}	Storage Junction Temperature	-65	150	°C	
TJ	Maximum Junction Temperature		150	°C	
TA	Operating Temperature Range	-40	85	°C	
θ_{JA}	Thermal Resistance, Junction to Am		85	°C/W	
ESD	Electrostatic Discharge Canability	Human Body Model, JESD22-A114	6		k\/
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		kV

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
VIN	Supply Voltage	1.5	5.5	V
TA	Ambient Operating Temperature	-40	+85	°C

ELECTRICAL CHARACTERISTICS

Typical values are at V_{IN} = 3.3 V and T_A = 25 °C. Unless otherwise noted

Symbol	Parameter	Conditions			Тур	Max	Units	
Basic Oper	ation							
	0	EN = Enable, I _{OUT} = 0 mA, V _{IN} = V _{EN} = 5.5 V			1.3	2		
lq	Supply Current	EN= Enable, Iout= 0 mA, Vin=	=V _{EN} =5.5 V, Ta=85 °C ⁽³⁾		1.4		μA	
		EN= Disable, I _{OUT} = 0 mA, V _{IN}	= 1.5 V		5	20		
		EN= Disable, I _{OUT} = 0 mA, V _{IN}	= 3.3 V		8			
I _{SD}	Shutdown Current on	EN= Disable, I _{OUT} = 0 mA, V _{IN}	= 4.2 V		12		nA	
		EN= Disable, I _{OUT} = 0 mA, V _{IN}	= 5.5 V		56	100		
		EN= Disable, I _{OUT} = 0 mA, V _{IN}	= 5.5 V, Ta= 85 °C ⁽³⁾		1000			
		\\\	Ta= 25 °C		14	19		
		V _{IN} = 5.5 V I _{OUT} = 500 mA	Ta= 85 °C (3)		16		- - mΩ	
Б	On Desistance	V 0.0.V I 500 A	Ta= 25 °C		18	23		
Ron	On-Resistance	V _{IN} = 3.3 V, I _{OUT} = 500 mA	Ta= 85 °C (3)		21			
		V _{IN} = 1.8 V, I _{OUT} = 300 mA	Ta= 25 °C (3)		30		7	
		V _{IN} = 1.5 V, I _{OUT} = 100 mA	Ta= 25 °C		37	42		
V _{IH}	EN Input Logic High Voltage	V _{IN} = 1.5 - 5.5 V					.,	
VIL	EN Input Logic Low Voltage	V _{IN} = 1.5 - 5.5 V			0.4	V		
Ren	EN pull down resistance	Internal Resistance	FD P		10	-	МΩ	
IEN	EN Source or Sink Current	V _{EN} = V _{IN} or GND	V _{EN} = V _{IN} or GND			1	μA	
V _{RCB_TH}	RCB Protection Threshold Voltage	V _{OUT} – V _{IN}	V _{OUT} – V _{IN}				.,,	
V _{RCB_RL}	RCB Protection Release Voltage	VIN — VOUT			37		- mV	
Switching (Characteristics (2), GLF72	120					•	
t _{dON}	Turn-On Delay	D 450 0 0 4 0 v.E			450			
t _R	V _{OUT} Rise Time	Rout= 150 Ω, Cout= 1.0 μF			730			
t _{dOFF}	Turn-Off Delay (3)	Rout= 150 Ω, Cout= 1.0 μF			20		μs	
t _F	V _{OUT} Fall Time (3)				360			
Switching (Characteristics ⁽²⁾ , GLF72 ⁻	122		I	ı	l	1	
t _{dON}	Turn-On Delay	R _{OUT} = 150 Ω, C _{OUT} = 1.0 μF			1500		μs	
t _R	V _{OUT} Rise Time				2000			
tdOFF	Turn-Off Delay (3)				25			
	,	R _{OUT} = 150 Ω, C _{OUT} = 1.0 μF				l		

Notes:

- 1. I_Q does not include Enable pull down current through the pull-down resistor $R_{\text{EN.}}$
- 2. $t_{ON} = t_{dON} + t_R$, $t_{OFF} = t_{dOFF} + t_F$
- 3. By design; characterized, not production tested

TIMING DIAGRAM

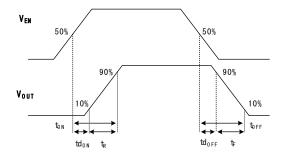
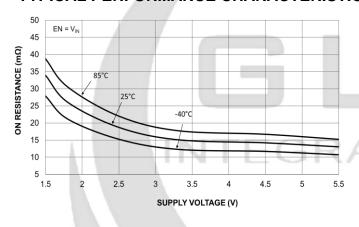



Figure 3. Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

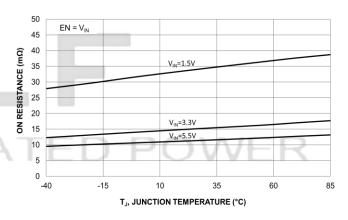
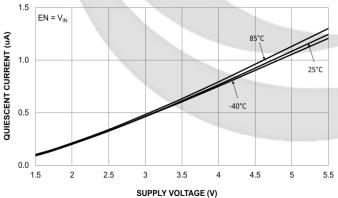



Figure 4. On-Resistance vs. Supply Voltage

Figure 5. On-Resistance vs. Temperature

V_{IN}=5.5V

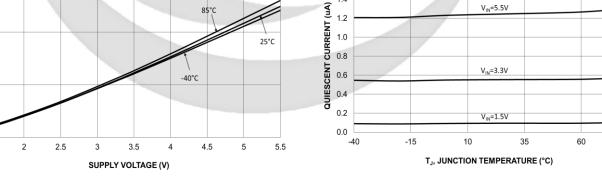


Figure 6. Quiescent Current vs. Supply Voltage

Figure 7. Quiescent Current vs. Temperature

85

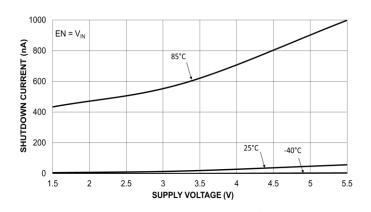


Figure 8. Shutdown Current vs. Supply Voltage

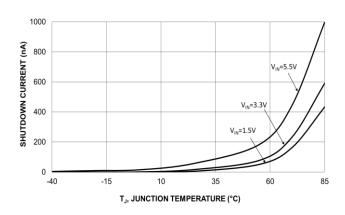


Figure 9. Shutdown Current vs. Temperature

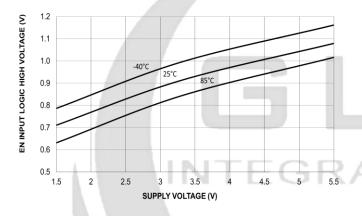


Figure 10. EN Input Logic High Threshold

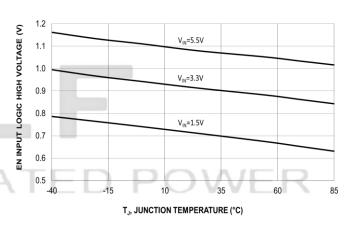


Figure 11. EN Input Logic High Threshold Vs. Temperature

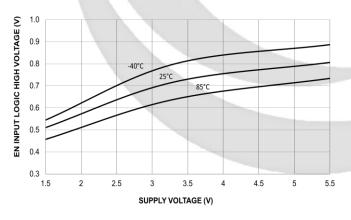


Figure 12. EN Input Logic Low Threshold

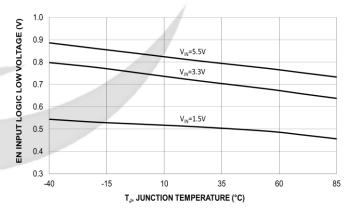
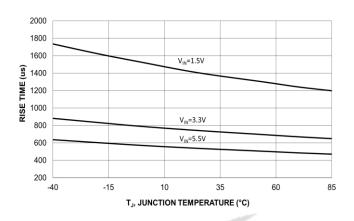



Figure 13. EN Input Logic Low Threshold Vs. Temperature

2500

V_{IN}=1.5V

1500

V_{IN}=3.3V

V_{IN}=5.5V

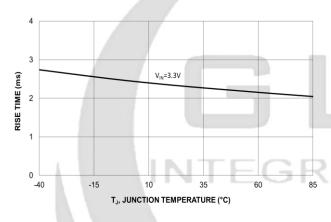
0

-40

-15

10

35


60

85

T_J, JUNCTION TEMPERATURE (°C)

Figure 14. Vout Rise Time vs. Temperature, GLF72120

Figure 15. Turn-On Delay Time vs. Temperature, GLF72120

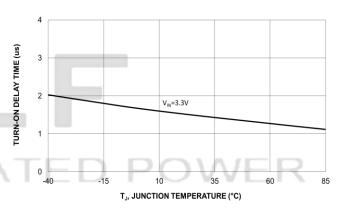
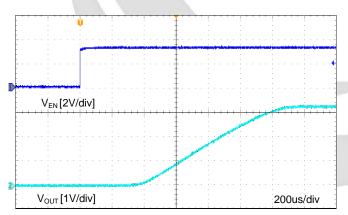



Figure 16. Vout Rise Time vs. Temperature, GLF72122

Figure 17. Turn-On Delay Time vs. Temperature, GLF72122

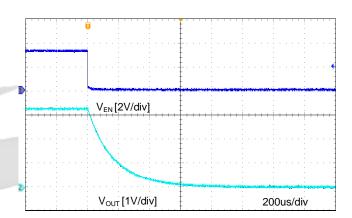


Figure 18. Turn-On Response, GLF72120 $V_{IN}{=}~3.3~V,~C_{IN}{=}~1.0~uF,~C_{OUT}{=}~1.0~uF,~R_{L}{=}~150~\Omega$

Figure 19. Turn-Off Response, GLF72120 $V_{\text{IN}}{=}~3.3~\text{V, C}_{\text{IN}}{=}~1.0~\text{uF, C}_{\text{OUT}}{=}~1.0~\text{uF, R}_{\text{L}}{=}~150~\Omega$

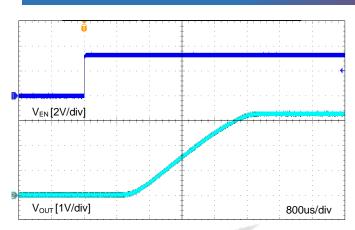


Figure 20. Turn-On Response, GLF72122 $\label{eq:Vin=3.3} \text{V, C}_{\text{IN}\text{=}} \text{ 1.0 uF, C}_{\text{OUT}\text{=}} \text{ 1.0 uF, R}_{\text{L}\text{=}} \text{ 150 } \Omega$

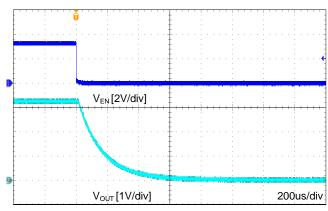


Figure 21. Turn-Off Response, GLF72122 $V_{IN}{=}~3.3~V,~C_{IN}{=}~1.0~uF,~C_{OUT}{=}~1.0~uF,~R_{L}{=}~150~\Omega$

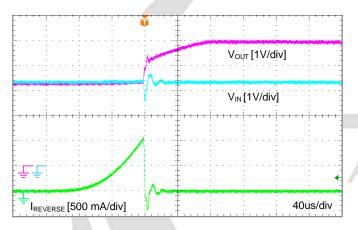


Figure 22. Reverse Current Blocking at Switch On VIN= Open, CIN= 1.0 uF, COUT= 1.0 uF

APPLICATION INFORMATION

The GLF72120 and GLF72122 are an ultra-efficient integrated 4 A I_QSmart[™] load switch with the slew rate control of the output voltage to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 1.5 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power supply. The package is 0.97 mm x 1.47 mm x 0.55 mm wafer level chip scale package saving space in compact applications and it has 6 bumps, 0.5 mm pitch for manufacturing availability.

Input Capacitor

The GLF72120 and GLF72122 require an input capacitor to function. A 1uF capacitor is recommended to be placed close to V_{IN} pin to reduce a voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to attenuate the input voltage drop.

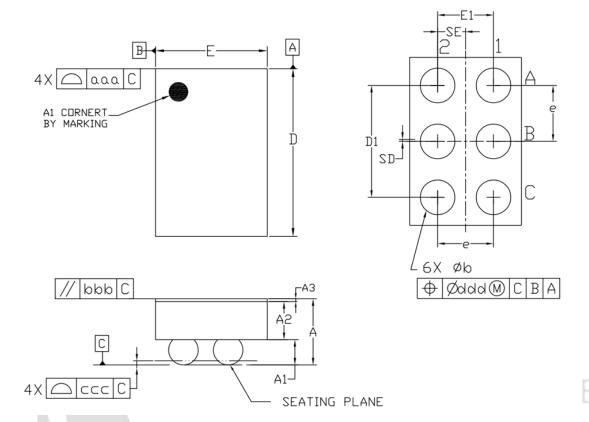
Output Capacitor

A 0.1 uF capacitor or higher values can be able to prevent undershoot caused by parasitic inductance on board traces at switching off and improve reliability of a controlled voltage rail. The C_{OUT} should be placed close to VOUT and GND pins.

EN pin

The GLF72120 and GLF72122 can be activated by EN pin high. Note that the EN pin has an internal pull-down resistor to maintain a reliable status without EN signal applied from an external controller.

True Reverse Current Blocking

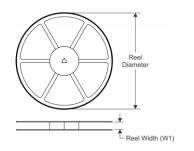

The GLF72120 and GLF72122 have a built-in reverse current blocking protection which always monitors the output voltage level regardless of the status of EN pin to check if it is greater than the input voltage. When the output voltage goes beyond the input voltage by 37 mV, that is the reverse current blocking protection trip voltage, the reverse current blocking function block turns off the switch. Note that some reverse current can occur until the V_{RCB} is triggered. The main switch will resume normal operation when the output voltage drops below the input source by the RCB protection release voltage.

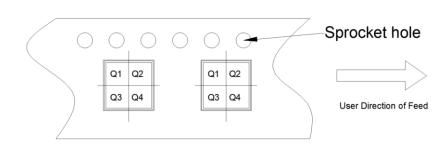
Board Layout

All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for VIN, VOUT, and GND will be better to reduce parasitic effects at dynamic operations and improve thermal performance at high load current.

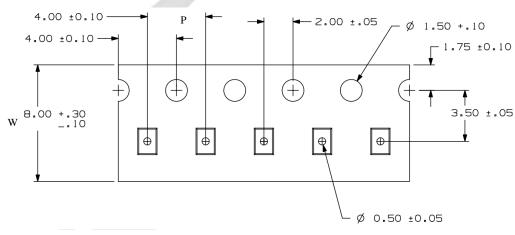
PACKAGE OUTLINE

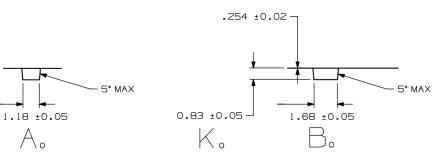
Notes


- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGRESS)
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 3. A3: BACKSIDE LAMINATION


Dimensional Ref.								
REF.	Min.	Nom.	Max.					
Α	0.500	0.550	0.600					
Α1	0.225	0.250	0.275					
A2	0.250	0.275	0.300					
Α3	0.020	0.025	0.030					
D	1.460	1.470	1.485					
Е	0.960	0.970	0.985					
D1	0.950	1.000	1.050					
E1	0.450	0.500	0.550					
Ь	0.260	0.310	0.360					
ω	0	.500 BS	C					
SD	0	.000 BS	C					
SE	0	.250 BS	C					
To	ol. of Fo	rm&Pos	sition					
aaa	0.10							
ЬЬЬ	0.10							
ccc	0.05							
ddd		0.05						

TAPE AND REEL INFORMATION


REEL DIMENSIONS


QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	Α0	В0	K0	Р	w	Pin1
GLF72120	WLCSP	6	3000	180	9	1.18	1.68	0.83	4	8	Q1
GLF72122	WLCSP	6	3000	180	9	1.18	1.68	0.83	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.