

Nano Current Consumed I_QSmart[™] Battery Protection Switch

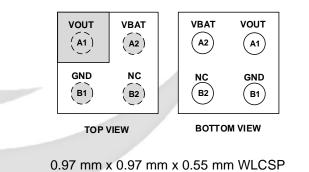
Preliminary Specification

DESCRIPTION

The GLF73710 is an I_QSmart[™] ultra-efficient, full battery protection switch with an accurate over charge voltage, over discharge voltage, and short circuit protection for lithium-Ion/Polymer battery safety.

The over discharge voltage protections keep a rechargeable battery working within the desired safe operating condition. When the battery voltage decreases below the over discharge detection voltage level, the GLF73710 switch is turned off immediately to cut off the battery power rail, consuming an ultra-low leakage current (IsD) to save the battery. In addition, when the load current reaches the Isc short circuit protection level, the GLF73710 switch is turned off and will maintain the off state to avoid any serious damage to system. The short circuit delay time avoids any false trigger which might open the switch.

When a charged battery cell is connected with the GLF73710, the GLF73710 remains in the off state and consumes an ultra-low leakage current (I_{SD}) until the V_{ON} voltage is applied to VOUT pin. Note that the GLF73710 is activated only by a V_{ON} voltage from a charger output.

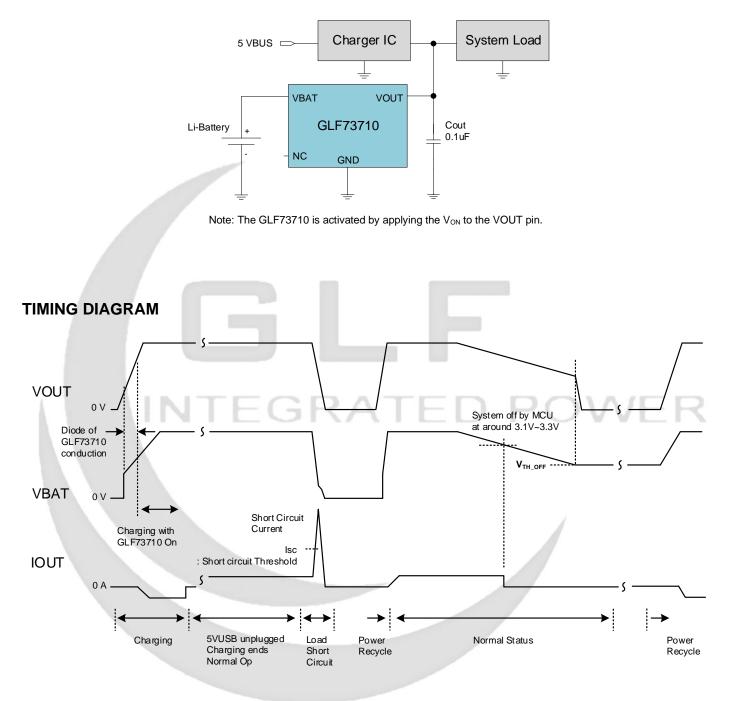

FEATURES

- Vod, Over Discharge Detection: 2.88 VBAT
- Load Short Circuit Protection with Delay Time to avoid a false trigger
- GLF73710 is Activated by Applying V_{ON} to the VOUT Pin from Charger
- 1.5 A Continuous Charging Current Capability from VOUT to VBAT Pin
- Low Ron : 31 mΩ Typ. @ 3.6 VBAT
- Quiescent Current, $I_Q = 700$ nA Typ @ 4.2 V_{BAT}
- Shutdown Current, IsD = 35 nA Typ @ VBAT < VOD
- Latch-off at Over Discharge Detection and Short Circuit Protection. Apply V_{ON} to VOUT pin to turn on GLF73710 switch again
- 0.5 V Battery Minimum Voltage for Charging
- 0.97 mm x 0.97 mm x 0.55 mm Chip Scale Package 4 Bumps, 0.5 mm Pitch

APPLICATIONS

- BLE Wireless Earphone
- Wearables / IoT Devices
- Hearing Aid

PACKAGE

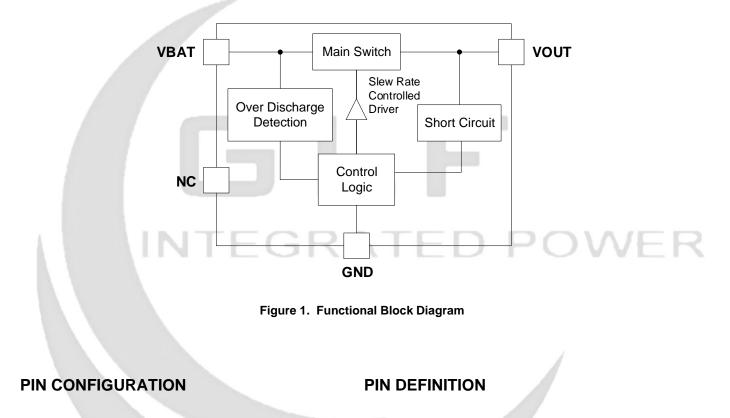


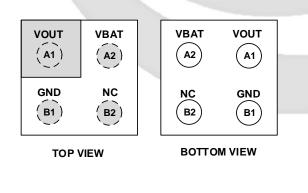
GLF73710 Nano Current Consumed I_QSmart[™] Battery Protection Switch

APPLICATION DIAGRAM

.F

INTEGRATED POWER




GLF73710 Nano Current Consumed IoSmart[™] Battery Protection Switch

DEVICE INFORMATION

Part Numbe	r Top Mark	R _{оN} (Тур) V _{BAT} =3.6 V	Over Discharge Detection, Vod	Short Circuit Protection, Isc
GLF73710	СВ	31 mΩ	2.88 V	0.55 A

FUNCTIONAL BLOCK DIAGRAM

Pin #	Name	Description
A1	VOUT	VOUT pin is connected to the charger output and system load. If the switch is in the off state, applying the appropriate voltage (V_{ON}) to V_{OUT} turns the switch back on.
A2	VBAT	VBAT pin is connected to the positive terminal of a battery pack to monitor the battery voltage. When the V_{BAT} voltage reaches the V_{OD} , the main switch is turned off and maintains the off state to save the battery from discharging.
B1	GND	Ground
B2	NC	No Connection. Leave it open.

Figure 2. 0.97 mm x 0.97 mm x 0.55 mm WLCSP

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Pa	Min.	Max.	Unit	
Vbat, Vout	Each Pin Voltage Range to GND	- 0.3	6	V	
I _{BAT}	Switch Continuous Current between V		1.5	А	
PD	Power Dissipation at T _A = 25°C		1.2	W	
T _{STG}	Storage Junction Temperature	- 65	150	°C	
TA	Operating Temperature Range	- 40	85	°C	
θ」Α	Thermal Resistance, Junction to Ambi		85	°C/W	
ESD	Flastrastatia Disabarga Capability	Human Body Model, JESD22-A114	6		kV
E9D	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		ĸv

ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Conditio	ns	Min.	Тур.	Max.	Units
VBAT(MIN)	Minimum Battery Voltage	Battery voltage for charging fro	0.5			V	
	Over Discharge	VBAT decreases until switch tur	ins off	2.80	2.88	2.96	V
Vod	Detection Voltage	VBAT decreases until switch tur	ns off, Ta=55 °C ⁽¹⁾	\cap	2.88		V
Von	ON Voltage applied to	V_{OUT} to turn on switch, $V_{BAT} \ge$	3.1 V		3.02		V
VON	VOUT to turn on switch	V_{OUT} to turn on switch, $V_{BAT} \ge$	3.1 V , Ta=55 °C $^{(1)}$		3.02		v
VF	Forward Voltage	From VOUT to VBAT pin, VBAT	- < 3.0 V		0.4		V
Isc	Short Circuit Shutdown	VBAT = 3.6 V			0.55		Α
t _{SC} ⁽¹⁾	Short Circuit Delay Time	VBAT = 3.6 V			0.8		ms
	Quiescent Current with Switch On	V _{BAT} = 3.6 V, I _{OUT} =0 mA, Switch = ON			0.65		uA
lq		V_{BAT} = 4.2 V, I _{OUT} =0 mA, Switch = ON			0.70		
		V_{BAT} = 4.2 V, I_{OUT} =0 mA, Switch = ON, Ta=55°C ⁽¹⁾			0.80		
	Shutdown Current from VBAT When Main Switch is Off	V _{BAT} = 3.6 V, V _{OUT} = 0 V			55		
I _{SD}		V _{BAT} = 2.5 V, V _{OUT} = 0 V			35		nA
		$V_{BAT} = 2.5 \text{ V}, V_{OUT} = 0 \text{ V}, \text{ Ta}=55 \text{ °C}^{(1)}$			70		
Ron		V _{BAT} =4.2 V, I _{OUT} = 500 mA	Ta=25 °C		30	34	
	On-Resistance		Ta=55 °C ⁽¹⁾		34		mΩ
			Ta=25 °C		31	35	
		VBAT =3.6 V, IOUT= 500 mA	Ta=55 °C ⁽¹⁾		35		
		V _{BAT} =3.3 V, I _{OUT} = 500 mA	Ta=25 °C		32	36	
toff	Turn-Off Time (1)	Cout=0.1 μF, Rout=150 Ω, Vo	UT = VOD to 0 V		35		us

Values are at $T_A = 25^{\circ}C$ unless otherwise noted.

Notes: 1. By design; characterized, not production tested.

TYPICAL PERFORMANCE CHARACTERISTICS

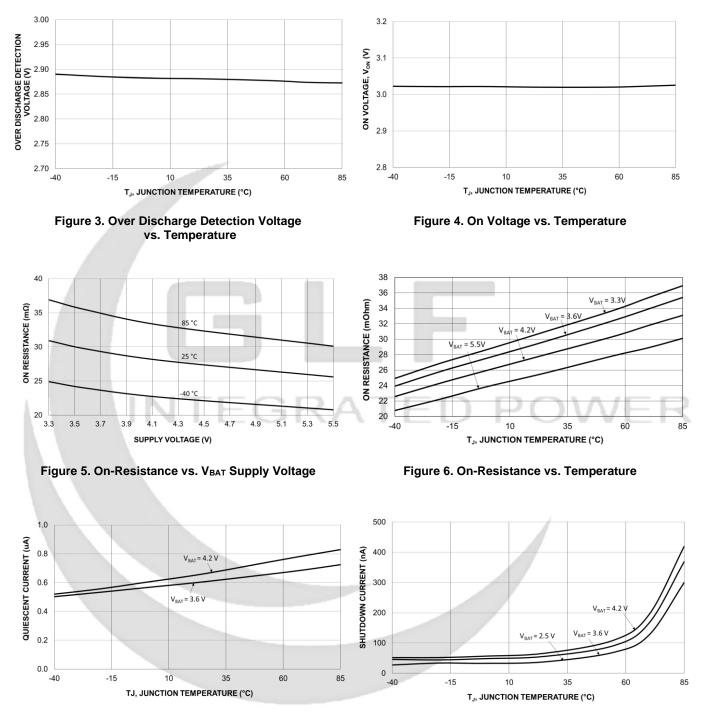


Figure 7. Quiescent Current vs. Temperature

Figure 8. Shutdown Current vs. Temperature

APPLICATION INFORMATION

The GLF73710 is an I_QSmart[™] ultra-efficient battery protection switch with the accurate over charge voltage, over discharge voltage, and short circuit protection for lithium-lon/Polymer battery safety. The best in class efficiency makes it ideal for the design of hearing devices, wearable devices, and tiny IoT devices.

Activation of Charging and Minimum Battery Charging Voltage

The GLF73710 is activated to turn on the main charging switch only by applying the on voltage (V_{ON}) to the VOUT pin, when a charger IC is enabled. The minimum battery voltage to charge is 0.5 V ($V_{BAT(MIN)}$). With a deeply discharged below 0.5 V, the GLF73710 does not turn on both the charge and discharge paths. During the pre-charge mode, where the battery voltage (V_{BAT}) is between 0.5 V and 2.9 V, the charging current flows through an internal diode (V_F). As the battery voltage increases beyond 3.1 V, the charge and discharge path switches will be fully activated to reduce the voltage drop and save power dissipation during both constant-current and constant-voltage charging modes.

Over Discharging Voltage Protection

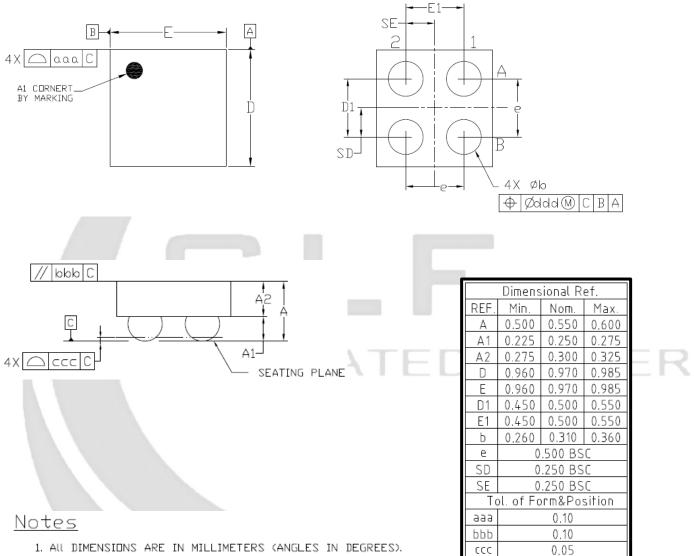
When the voltage of a battery decreases to the over-discharge detection voltage level, the GLF73710 discharging path is turned off consuming an ultra-low leakage current to save the battery. The GLF73710 remains in the off state until a higher voltage is applied to the VOUT pin.

Short Circuit Protection

When the discharge current from the battery exceeds the short circuit detection level (I_{SC}), the discharging path of the GLF73710 will be turned off after a preset delay time (t_{SC}) in order to avoid a false detection. After the short circuit protection event, the GLF73710 maintains in the off state and needs a power recycle of a system to apply V_{ON} to VOUT pin in order to be reactivated.

Input and Output Capacitors

Input and output capacitors are not required for GLF73710 operation. However, a 0.1uF capacitor is recommended to be placed close to the VBAT and VOUT pins in order to mitigate any unexpected electrical noise or the transient voltage peak caused by a hot-plugging voltage source.

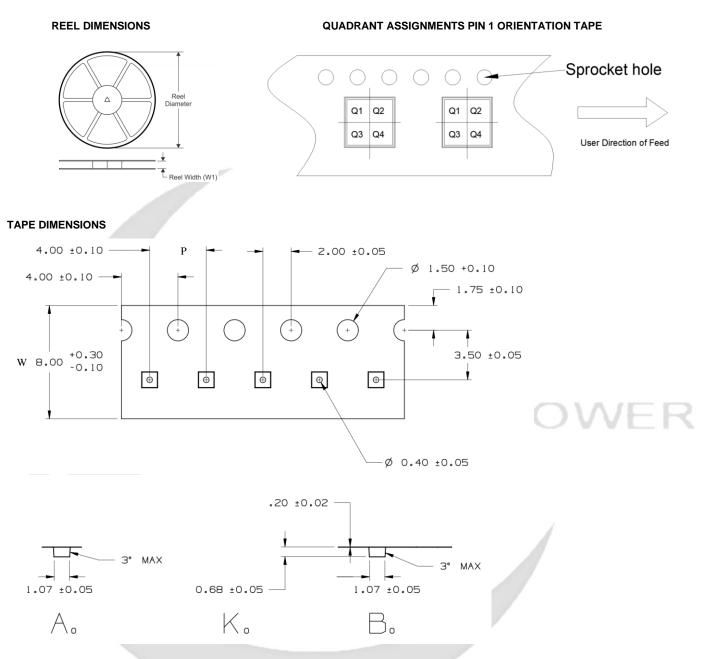

Board Layout

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VBAT, VOUT, and GND will help reduce voltage drops, and parasitic effects during dynamic operation as well as improve the thermal performance at high load currents.

F. INTEGRATED POWER

GL

PACKAGE OUTLINE


ddd

0.05

2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

TAPE AND REEL INFORMATION

INTEGRATED POWER

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	A0	В0	К0	Ρ	w	Pin1
GLF73710	WLCSP	4	3000	180	9	1.07	1.07	0.68	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.