



**Product Specification** 

#### **DESCRIPTION**

The GLF4020 is an integrated power multiplexer switch with dual independent power switches connected to a single output pin to enable seamless transition between two input sources.

The GLF4020 provides an automatic selection mode as well as a manual selection mode by the combination of the logic input pins of EN and SEL. The EN input pin is used along with the select (SEL) input pin to select the automatic switching function, select VIN1 only, select VIN2 only, or turn both switches off. In the automatic selection mode, the GLF4020 automatically selects the higher input voltage source out of two input DC power supplies.

The GLF4020 features an ultra-efficient  $I_QSmart^{TM}$  technology that offers quiescent current ( $I_Q$ ) and shutdown current ( $I_{SD}$ ) in the industry. Low  $R_{ON}$  reduces conduction losses while low  $I_Q$  and  $I_{SD}$  solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

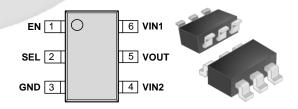
The GLF4020 blocks any cross-conduction current between two input power sources. When the switch is disabled, the GLF4020 prevents the reverse current to the input source from the output at any higher Vout than Vin condition.

#### **FEATURES**

- Two-Input and Single-Output Power Multiplexer Switch
- Automatic and Manual Input Selection Mode
- Supply Voltage Range: 2.5 V to 6.5 V
   7.0 V<sub>Abs</sub> Max
- Ron: 92 m $\Omega$  Typ. at 6.5 V<sub>IN1</sub> or V<sub>IN2</sub> 105 m $\Omega$  Typ. at 4.5 V<sub>IN1</sub> or V<sub>IN2</sub>
- 2 A Continuous Output Current Capability Per Channel
- Ultra-Low Supply Current at Operation

 $I_Q:\ 4~\mu A$  Typ at 6.5  $V_{IN}$ 

- Ultra-Low Stand-by Current
   I<sub>SD</sub>: 6 nA Typ at 6.5 V<sub>IN</sub>
- Smart Control Pins

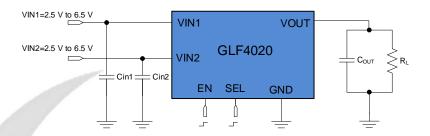

 $I_{EN}$  and  $I_{SEL}$ : 3 nA Typ at  $V_{EN}$  or  $V_{SEL} > V_{IH}$  R<sub>EN</sub> and R<sub>SEL</sub>: 500 k $\Omega$  Typ

- No Cross Conduction Between Two Inputs
- Reverse Current Blocking when Disabled
- Operating Temperature Range: -40 °C to 85 °C
- HBM: 6 kV, CDM: 2 kV

#### **APPLICATIONS**

- Smart Devices
- Smart Home Electronics

#### **PACKAGE**




SOT23-6L

#### **DEVICE ORDERING INFORMATION**

| Part Number  | Top Mark | Ron at 6.5 Vin | Output Current, IOUT | Ultra-low IQ at 6.5 VIN |
|--------------|----------|----------------|----------------------|-------------------------|
| GLF4020-T2G7 | DP       | 92 mΩ          | 2 A                  | 4 µA                    |

#### **APPLICATION DIAGRAM**



### **FUNCTIONAL BLOCK DIAGRAM**

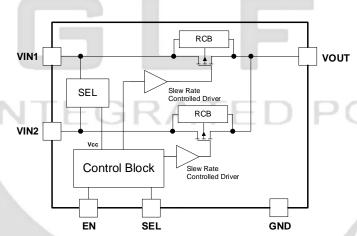



Figure 1. Functional Block Diagram

### **PIN CONFIGURATION**

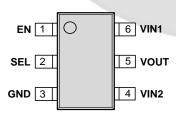



Figure 2. SOT23-6L

### **PIN DEFINITION**

| Pin# | Name | Description                                                     |
|------|------|-----------------------------------------------------------------|
| 1    | EN   | Enable to control the switch. Do not leave the EN pin floating. |
| 2    | SEL  | Input Source Selection. Do not leave the SEL pin floating.      |
| 3    | GND  | Ground                                                          |
| 4    | VIN2 | Switch Input 2                                                  |
| 5    | VOUT | Switch Output                                                   |
| 6    | VIN1 | Switch Input 1                                                  |



#### **ABSOLUTE MAXIMUM RATINGS**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol                 | Parameter                                                             |                               |   | Max. | Unit |
|------------------------|-----------------------------------------------------------------------|-------------------------------|---|------|------|
| VIN1, VIN2<br>VOUT, EN | Each Pin Voltage Range to GND                                         |                               |   | 7.0  | V    |
| Іоит                   | Maximum Continuous Switch Current                                     |                               |   | 2.0  | Α    |
| PD                     | Power Dissipation at T <sub>A</sub> = 25°C                            |                               |   | 1.0  | W    |
| T <sub>STG</sub>       | Storage Junction Temperature                                          |                               |   | 150  | °C   |
| TA                     | Operating Temperature Range                                           |                               |   | 85   | °C   |
| $\theta_{JC}$          | Thermal Resistance, Junction to Case                                  |                               |   | 90   | °C/W |
| θја                    | Thermal Resistance, Junction to Ambient                               |                               |   | 180  | °C/W |
| ESD                    | Electrostatic Discharge Conchility                                    | Human Body Model, JESD22-A114 | 6 |      | kV   |
|                        | Electrostatic Discharge Capability  Charged Device Model, JESD22-C101 |                               | 2 |      | ΚV   |

**Notes:** 1. The thermal resistance depends on the PCB layout and heat dissipation.

### **RECOMMENDED OPERATING CONDITIONS**

| Symbol     | Parameter                     |     | Max. | Unit |
|------------|-------------------------------|-----|------|------|
| VIN1, VIN2 | Supply Voltage                | 2.5 | 6.5  | V    |
| TA         | Ambient Operating Temperature | -40 | +85  | °C   |



### **ELECTRICAL CHARACTERISTICS**

 $V_{\text{IN1}} = V_{\text{IN2}} = 2.5 \text{ V}$  to 6.5 V and  $T_{\text{A}} = 25^{\circ}\text{C}$ . Unless otherwise noted

| Symbol                                            | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                  | Conditions                                                                            |                |     | Тур. | Max. | Units |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------|-----|------|------|-------|
| Basic Opera                                       | ation                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                | •   |      |      |       |
| l <sub>Q1</sub> , l <sub>Q2</sub>                 | $\begin{array}{c} V_{\text{IN1}} = 6.5 \text{ V},  V_{\text{IN2}} < V_{\text{in1}},  I_{\text{OUT}} = 0 \text{ mA}, \\ \text{EN} = 0 \text{ V}, \text{ SEL} = V_{\text{IN1}},  V_{\text{OUT}} = V_{\text{IN1}} \\ \text{or} \\ V_{\text{IN2}} = 6.5 \text{ V},  V_{\text{IN1}} < V_{\text{IN2}},  I_{\text{OUT}} = 0 \text{ mA}, \\ \text{EN} = \text{SEL} = V_{\text{IN2}},  V_{\text{OUT}} = V_{\text{IN2}} \end{array}$ |                                                                                       |                | 4   | 5.5  | μА   |       |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | As above, Ta = 85°C (1)                                                               |                |     | 5    |      |       |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>IN1,2</sub> = 6.5 V, V <sub>OUT</sub> = GND, EN = S                            | EL = 0 V       |     | 6    | 20   |       |
| I <sub>SD1</sub> , I <sub>SD2</sub>               | Shutdown Current                                                                                                                                                                                                                                                                                                                                                                                                           | V <sub>IN1,2</sub> = 6.5 V, V <sub>OUT</sub> = GND, EN = S<br>Ta=85 °C <sup>(1)</sup> | SEL = 0 V,     |     | 60   |      | nA    |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | V V 05VI 500 A                                                                        | Ta = 25 °C     |     | 92   | 98   |       |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | $V_{IN1}$ or $V_{IN2} = 6.5$ V $I_{OUT} = 500$ mA                                     | Ta = 85 °C (1) |     | 110  |      |       |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | V 55VI 500 A                                                                          | Ta = 25 °C     |     | 97   | 107  | - mΩ  |
| Ron                                               | On-Resistance                                                                                                                                                                                                                                                                                                                                                                                                              | $V_{IN1}$ or $V_{IN2} = 5.5 \text{ V}$ , $I_{OUT} = 500 \text{ mA}$                   | Ta = 85 °C (1) |     | 115  |      |       |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>IN1</sub> or V <sub>IN2</sub> = 4.5 V, I <sub>OUT</sub> = 500 mA               | Ta = 25 °C     |     | 105  | 118  |       |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       | Ta = 85 °C (1) |     | 125  |      |       |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>IN1</sub> or V <sub>IN2</sub> = 3.3 V, I <sub>OUT</sub> = 300 mA               | Ta = 25 °C     |     | 120  | 135  |       |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>IN1</sub> or V <sub>IN2</sub> = 2.5 V, I <sub>OUT</sub> = 100 mA               | Ta = 25 °C     |     | 145  | 162  |       |
| V <sub>IH</sub>                                   | EN, SEL Input Logic High Voltage                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                       | 1              | 1.2 |      |      | V     |
| VIL                                               | EN, SEL Input Logic Low Voltage                                                                                                                                                                                                                                                                                                                                                                                            | GRAIL                                                                                 | PO             |     | / -  | 0.4  | V     |
| I <sub>EN</sub> , I <sub>SEL</sub>                | EN, SEL Current                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>EN</sub> or V <sub>SEL</sub> > V <sub>IH</sub> , Enabled                       |                |     | 3    | 20   | nA    |
| R <sub>EN</sub> , R <sub>SEL</sub> <sup>(1)</sup> | EN, SEL Pulldown Resistance                                                                                                                                                                                                                                                                                                                                                                                                | V <sub>EN</sub> or V <sub>SEL</sub> < V <sub>IL</sub> , Disabled                      |                |     | 500  |      | kΩ    |
| I <sub>RVS</sub>                                  | Reverse Current (1)                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>IN1</sub> = V <sub>IN2</sub> = 0 V, V <sub>OUT</sub> = 5.5 V, EN = S           | SEL=0 V        |     | 2.5  |      | μA    |
| Switching Ch                                      | naracteristics <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |                |     |      |      |       |
| t <sub>dON</sub>                                  | Turn-On Delay                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       |                |     | 300  |      |       |
| t <sub>R</sub>                                    | VOUT Rise Time                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                       |                |     | 448  |      |       |
| TdHL                                              | High-low Delay (1)                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                |     | 6    |      | μs    |
| TfHL                                              | High-low Fall Time (1)                                                                                                                                                                                                                                                                                                                                                                                                     | Very 6 F.V. Very 44                                                                   | EV             |     | 4    |      |       |
| Vdroop                                            | Voltage Droop (1)                                                                                                                                                                                                                                                                                                                                                                                                          | $V_{IN1} = 6.5 \text{ V}, V_{IN2} = 4.5 \text{ R}_{L} = 150 \Omega, C_{OUT} = 1.0$    |                |     | 160  |      | mV    |
| TdLH                                              | Low-high Delay (1)                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                |     | 11   |      |       |
| TrLH                                              | Low-high Rise Time (1)                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                       |                |     | 4    |      | - μs  |
| tdoff                                             | Turn-Off Delay (1)                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                |     | 13   |      |       |
| t <sub>F</sub>                                    | VOUT Fall Time (1)                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                       |                |     | 350  |      |       |

Notes:

- 1. By design; characterized, not production tested.
- 2.  $t_{ON} = t_{dON} + t_R$ ,  $t_{OFF} = t_{dOFF} + t_F$

#### TIMING DIAGRAM AND TRUTH TABLE

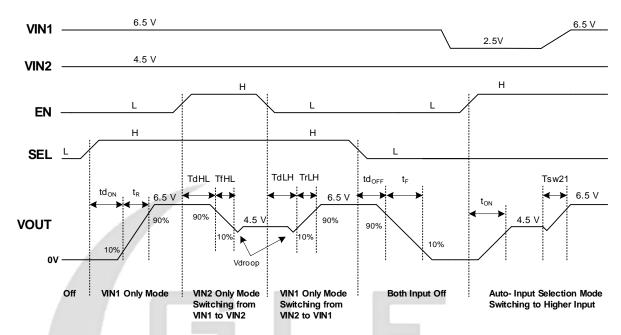



Figure 3. Timing Diagram

| SEL | EN | Function                                                                       | VOUT                               |
|-----|----|--------------------------------------------------------------------------------|------------------------------------|
| 0   | 0  | Both switches are off                                                          | High-Z                             |
| 0   | 1  | Auto-Input selection. Vout is connected to a higher input source automatically | Higher Input between VIN1 and VIN2 |
| 1   | 0  | Only VIN1 is selected                                                          | VIN1                               |
| 1   | 1  | Only VIN2 is selected                                                          | VIN2                               |

**Table 1. Truth Table of Input Source Selection** 

#### TYPICAL PERFORMANCE CHARACTERISTICS

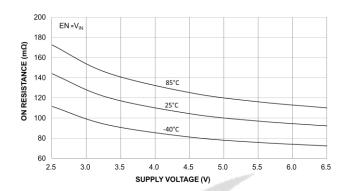



Figure 4. On-Resistance vs. Supply Voltage

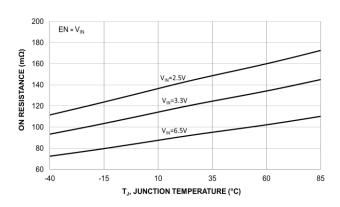



Figure 5. On-Resistance vs. Temperature

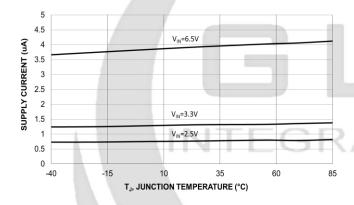



Figure 6. Quiescent Current vs. Temperature

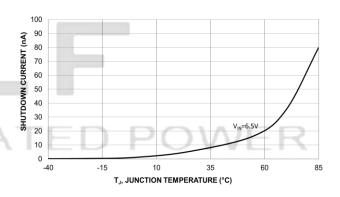



Figure 7. Shutdown Current vs. Temperature

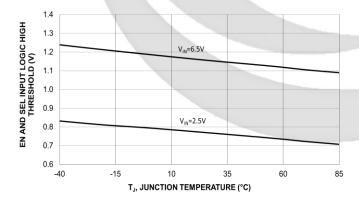



Figure 8. EN and SEL Input Logic High Threshold Vs.

Temperature

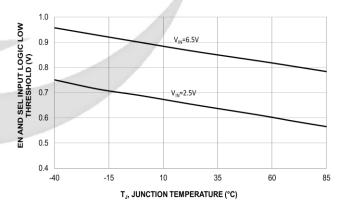



Figure 9. EN and SEL Input Logic Low Threshold Vs.

Temperature



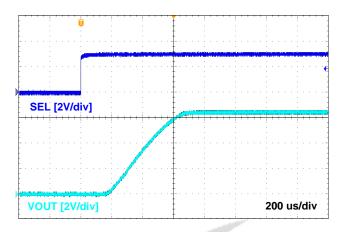



Figure 10. Turn-On Response  $\label{eq:Vin1} V_{\text{IN1}}\text{=}6.5~V,~C_{\text{IN}}\text{=}0.1~\mu\text{F},~C_{\text{OUT}}\text{=}1.0~\mu\text{F},~R_{\text{L}}\text{=}150~\Omega$ 

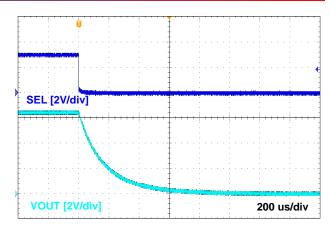



Figure 11. Turn-Off Response  $V_{\text{IN1}}\text{=}6.5~V,~C_{\text{IN}}\text{=}0.1~\mu\text{F},~C_{\text{OUT}}\text{=}1.0~\mu\text{F},~R_{\text{L}}\text{=}150~\Omega$ 

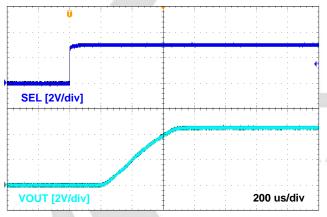



Figure 12. Turn-On Response  $V_{\text{IN1}}\text{=}4.5~V,~C_{\text{IN}}\text{=}0.1~\mu\text{F},~C_{\text{OUT}}\text{=}1.0~\mu\text{F},~R_{\text{L}}\text{=}150~\Omega$ 

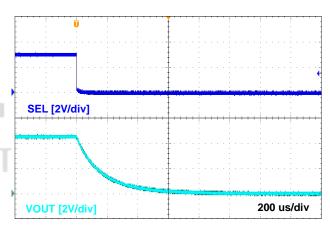



Figure 13. Turn-Off Response  $V_{IN1}$ =4.5 V,  $C_{IN}$ =0.1  $\mu$ F,  $C_{OUT}$ =1.0  $\mu$ F,  $R_L$ =150  $\Omega$ 

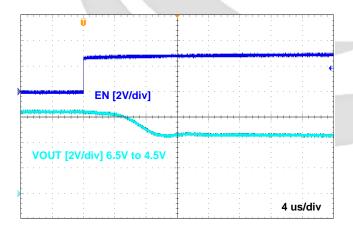



Figure 14. V<sub>OUT</sub> Switchover from 5 V to 3.3 V V<sub>IN1</sub>=6.5 V, V<sub>IN2</sub>=4.5 V C<sub>IN</sub>=1.0  $\mu$ F, C<sub>OUT</sub>=1.0  $\mu$ F, R<sub>L</sub>=150  $\Omega$ 

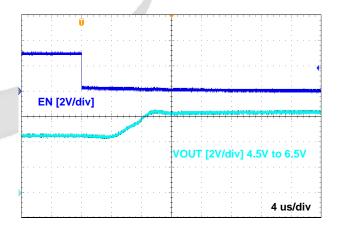



Figure 15. V<sub>OUT</sub> Switchover from 3.3 V to 5 V  $V_{IN1}{=}6.5~V,~V_{IN2}{=}4.5~V~C_{IN}{=}1.0~\mu F,~C_{OUT}{=}1.0~\mu F,~R_{L}{=}150~\Omega$ 

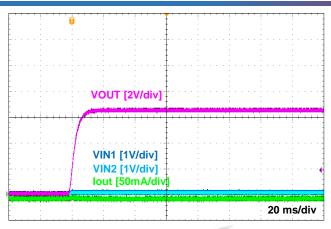



Figure 16. Reverse Current Blocking When Disabled V<sub>IN1</sub> = V<sub>IN2</sub> =0 V, V<sub>OUT</sub>=0 V to 6.5 V, C<sub>IN</sub>=1.0 μF, C<sub>OUT</sub>=1.0 μF, EN=SEL=0 V

#### **APPLICATION INFORMATION**

The GLF4020 is a fully integrated 2 A Power Mux with a fixed slew rate control to limit the inrush current during device turn on. The GLF4020 also has a wide voltage operating range from 2.5 V to 6.5 V. In the off state, the GLF4020 consumes very low leakage current to avoid unwanted power drain from limited input power supplies.

#### **Input Source Selection**

By changing the state of the SEL and EN pins, the GLF4020 offers the automatic as well as the manual input selection mode. In each mode, the VOUT connects to one input source.

#### **Input Capacitor**

A capacitor is recommended to be placed close to the V<sub>IN</sub> pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

#### Input Voltage Spike Reduction

In steady state condition, the voltages at input pins almost equal to the input power sources. However, at the transient time when the power source is plugged in, a spike voltage will be induced at input pin. The level of the voltage spike is determined by the parasitic inductance between power source and input pin as well as the change rate of input current. The longer length between power source and input pin, the faster change rate of input current, the larger voltage spike. If the spike voltage level exceeds the absolute maximum rated input voltage, it may damage the chip permanently. Below is the waveform when a 6.0 V power source is "hot" plugged in, and the voltage spike can be up to 9.1 V. A "hot" plug-in is not recommended all the time.

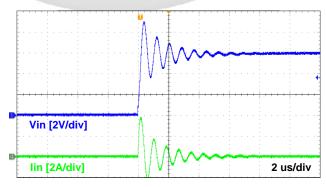



Figure 17. the voltage spike when the power source is "hot" plugged in (IC is disabled)

The voltage spikes are tested with different wire length between the power source and input pin. The results are shown in the table below.

| V <sub>IN</sub> (V) | Wire Length (Cm) | V <sub>IN</sub> _spike (V) |
|---------------------|------------------|----------------------------|
|                     | 1                | 7.0                        |
| 6.0                 | 3                | 7.6                        |
|                     | 5                | 9.1                        |

To avoid unexpected voltage spike, a resistor is recommended in series with input capacitor. The circuit is shown in Figure 18.

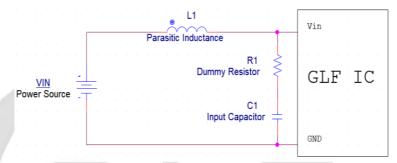



Figure 18. Reduction of voltage spike with a dummy resistor in series with input capacitor

The voltage spike is reduced from 9.1 V (Figure 17) to 6.8 V (Figure 19) by a 1 Ohm dummy resistor which is in series with the input capacitor at same external conditions, which shows a safe voltage spike less than 7 V<sub>Abs</sub>.

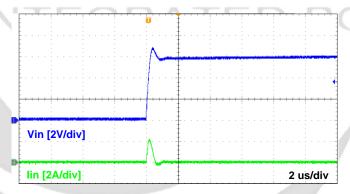



Figure 19. the voltage spike is reduced by the dummy resistor

Several combinations of wire length and dummy resistors are selected for different designs. Test results are shown in the following table. The test results show that the dump resistor can help reduce the voltage spike, and the designers can select proper value resistor in the designs based on the application conditions.

| V <sub>IN</sub> (V) | Dummy Resistor (Ω) | Wire Length (Cm) | V <sub>IN</sub> _spike (V) |
|---------------------|--------------------|------------------|----------------------------|
|                     |                    | 1                | 6.4                        |
|                     | 1.0                | 3                | 6.5                        |
|                     |                    | 5                | 6.8                        |
|                     |                    | 1                | 6.1                        |
| 6.0                 | 2.2                | 3                | 6.3                        |
|                     |                    | 5                | 6.4                        |
|                     | 3.6                | 1                | 6.0                        |
|                     | ა.ნ                | 3                | 6.0                        |
|                     |                    | 5                | 6.1                        |

### **GLF4020**

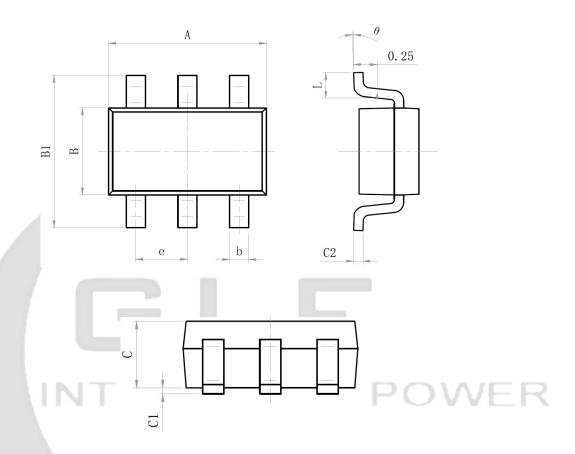


### High Efficiency Power Multiplexer Switch With Auto & Manual Input Selection

#### **Output Capacitor**

An output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The Cout capacitor should be placed close to the VOUT and GND pins.

#### **Reverse Current Blocking**


The GLF4020 also prevents the reverse current from the output voltage when both switches are turned off at EN = SEL = 0 V.

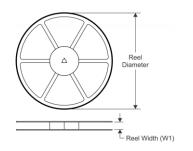
### **Board Layout**

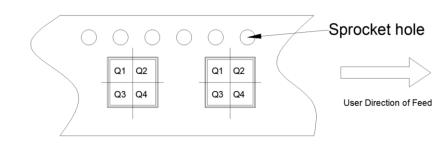
All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operations as well as improve the thermal performance at high load current.



### **PACKAGE OUTLINE**




| \ | Size<br>Mark | Min(mm) | Max(mm)  | Size<br>Mark | Min(mm) | Max(mm) |
|---|--------------|---------|----------|--------------|---------|---------|
| h | A            | 2.82    | 3.02     | С            | 1.05    | 1. 15   |
|   | е            | 0.9     | 95 (BSC) | C1           | 0.03    | 0. 15   |
|   | b            | 0. 28   | 0.45     | C2           | 0.12    | 0. 23   |
|   | В            | 1.50    | 1.70     | L            | 0.35    | 0.55    |
| ٧ | B1           | 2.60    | 3.00     | θ            | 0°      | 8°      |




#### TAPE AND REEL INFORMATION


#### **REEL DIMENSIONS**

#### **QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE**





#### TAPE DIMENSIONS



#### Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers





#### **SPECIFICATION DEFINITIONS**

| Document<br>Type             | Meaning                                                                                                                                                                                                                                                                                                                   | Product Status |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Target<br>Specification      |                                                                                                                                                                                                                                                                                                                           |                |
| Preliminary<br>Specification | This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question. | Qualification  |
| Product<br>Specification     | This document represents the anticipated production performance characteristics of the device.                                                                                                                                                                                                                            | Production     |

#### **DISCLAIMERS**

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.