

Nano-Current Consumed, I_QSmart[™] Load Switch with Slew Rate Control and True Reverse Current Blocking

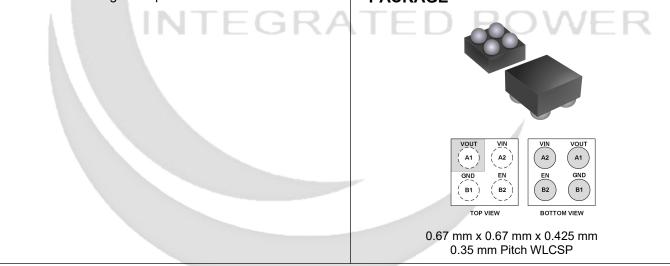
Product Specification

DESCRIPTION

The GLF1220H and GLF1221H are an ultra-efficiency, 1 A rated, integrated load switch with the slew rate control as well as a true reverse current blocking function. The best-in-class efficiency makes it an ideal choice for use in IoT, mobile, and wearable electronics.

The GLF1220H and GLF1221H feature an ultraefficient I_QSmart^{TM} technology that supports the lowest quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The GLF1220H and GLF1221H offer and industry leading true reverse current blocking (TRCB) function in on and off states. The integrated slew rate control can enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF1220H and GLF1221H slew rate control specifically limits inrush current during turn-on to minimize voltage droop.


FEATURES

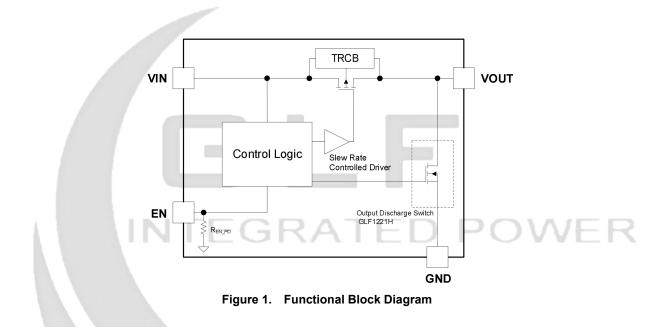
- Wide Input Range, V_{IN} = 1.5 V to 5.5 V 6 V_{ABS} Max
- I_{OUT} Max = 1 A
- Low R_{ON} = 52 m Ω Typ. at 5.5 V_{IN}
- Ultra-Low I_Q: 500 nA Typ at 5.5 V_{IN}
- Ultra-Low I_{SD}: 10 nA Typ at 5.5 V_{IN}
- True Reverse Current Blocking Protection
- Integrated Output Discharge Switch, GLF1221H
- Internal Pull-Down Resistor on EN Pin

APPLICATIONS

- Wearables
- Mobile Devices
- Low Power Subsystems

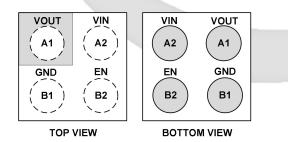
PACKAGE

APPLICATION DIAGRAM



Nano-Current Consumed, I_QSmart[™] Load Switch

ALTERNATE DEVICE OPTIONS


Part Number	Top Mark	R _{ON} (Typ) at V _{IN} (MAX)	True Reverse Current Blocking	V _{OUT} Rise Time at 3.3 V _{IN}	Output Discharge	EN Activity
GLF1220H	Z				NA	
GLF1221H	R	52 mΩ	Yes	390 µs	85 Ω	High

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

PIN DEFINITION

 Pin #	Name	Description
A1	Vout	Switch Output
A2	Vin	Switch Input. Supply Voltage for IC
B1	GND	Ground
B2	EN	Enable to control the switch. The EN pin has an internal pull-down resistor.

Nano-Current Consumed, I_QSmart[™] Load Switch

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Ра	Min.	Max.	Unit		
V _{IN} , V _{OUT} , V _{EN}	Each Pin Voltage Range to GND		-0.3	6	V	
	Maximum Continuous Switch Current					
lout	Pulse, 300 us pulse and 2 % duty cycle		2	A		
PD	Power Dissipation at $T_A = 25$ °C		1	W		
T _{STG}	Storage Junction Temperature	-65	150	°C		
TA	Operating Temperature Range	-40	85	°C		
θ _{JA}	Thermal Resistance, Junction to Ambi		125	°C/W		
ESD	Electrostatic Discharge Canability	Human Body Model, JESD22-A114	3		kV	
	Electrostatic Discharge Capability	2		κV		

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
Vin	Supply Voltage	1.5	5.5	V
TA	Ambient Operating Temperature	- 40	+ 85	S ₀C

Nano-Current Consumed, I_QSmart[™] Load Switch

ELECTRICAL CHARACTERISTICS

Values are at V_{IN} = 3.3 V and T_A = 25 °C unless otherwise noted.

Symbol	Parameter	Conditio	ons	Min.	Тур.	Max.	Unit
Basic Ope	eration			•			
V _{IN}	Supply Voltage			1.5		5.5	V
L (1)		V _{IN} =5.5 V, V _{EN} =0 V, I _{OUT} =0 mA			500	680	
l _Q ⁽¹⁾	Quiescent Current	V _{IN} =5.5 V, V _{EN} =0 V, I _{OUT} =0 m	A, Ta=85 °C ⁽⁴⁾		550		
		EN = Disable, Iout=0 mA, VIN=	:1.5 V		1		1
I _{SD}		EN = Disable, I _{OUT} =0 mA, V _{IN} =	2.5 V		2		1
		EN = Disable, I _{OUT} =0 mA, V _{IN} =	3.3 V		3		nA
	Shutdown Current	EN = Disable, I _{OUT} =0 mA, V _{IN} =	4.5 V		4		
		EN = Disable, I _{OUT} =0 mA, V _{IN} =	5.5 V		10	40	
		EN = Disable, Iout=0 mA, VIN=	5.5 V, Ta=55 °C ⁽⁴⁾		50		
		EN = Disable, Iout=0 mA, VIN=	5.5 V, Ta=85 °C ⁽⁴⁾		275		1
Ron			Ta=25 °C		52	60	
	On-Resistance	V _{IN} =5.5 V, I _{OUT} = 500 mA	Ta=85 °C (4)		60		1
		V _{IN} =4.5 V, I _{OUT} = 500 mA	Ta=25 °C		57	65	-
			Ta=85 °C (4)		67		
		V _{IN} =3.3 V, I _{OUT} = 500 mA	Ta=25 °C		67	77	mΩ
			Ta=85 °C ⁽⁴⁾	$\mathcal{D}\mathcal{V}$	79		<u>.</u>
		V _{IN} =2.5 V, I _{OUT} = 300 mA	Ta=25 °C		82		-
		V _{IN} =1.8 V, I _{OUT} = 300 mA	Ta=25 °C		112		
		V _{IN} =1.5 V, I _{OUT} = 100 mA	Ta=25 °C		142		-
R _{DSC}	Output Discharge Resistance	V _{EN} = Low , I _{FORCE} = 10 mA, GL	F1221H Only		85		Ω
VIH	EN Input Logic High Voltage	V _{IN} =1.5 V to 5.5 V	· · · ·	1.2			V
VIL	EN Input Logic Low Voltage	V _{IN} =1.5 V to 5.5 V				0.3	V
R _{EN}	EN Internal resistance	Internal Pull-down Resistance			10		MΩ
I _{EN}	EN Current (2)	V _{EN} = 5.5 V			0.55	0.8	μA
V _{RCB_TH}	RCB Protection Threshold	V _{OUT} – V _{IN}			40		
V _{RCB_RL}	RCB Protection Release	V _{IN} - V _{OUT}			30		- mV
Switching	Characteristics ⁽²⁾			-			
t _{dON}	Turn-On Delay	D 450 0 0 0 4E			290		
t _R	Vout Rise Time	RL=150 Ω, Cout=0.1 μF			390		1
t_{dOFF}	Turn-Off Delay (3), (4)	R∟=150 Ω, Coυτ=0.1 μF			16]
t⊧	V _{OUT} Fall Time ^{(3), (4)}	GLF1220H			30		μs
t_{dOFF}	Turn-Off Delay ^{(3), (4)}	R∟=150 Ω, Couτ=0.1 μF			16		1
	1	GLF1221H				1	1

2. $t_{ON} = t_{dON} + t_R$, $t_{OFF} = t_{dOFF} + t_F$ 3. Output discharge path is enabled during off. 4. By design; characterized, not production tested.

TIMING DIAGRAM

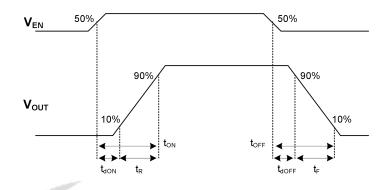
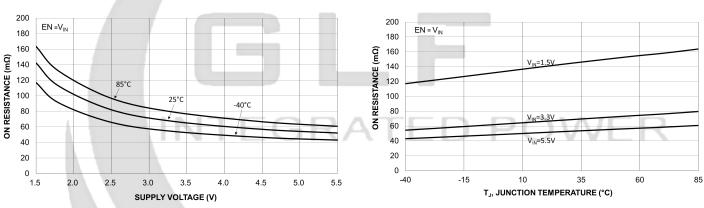
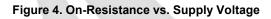




Figure 3. Timing Diagram

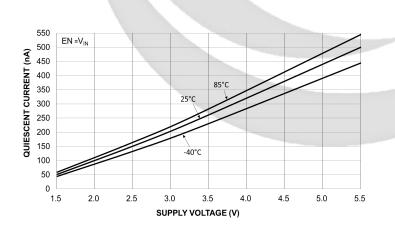


Figure 6. Quiescent Current vs. Supply Voltage

Figure 5. On-Resistance vs. Temperature

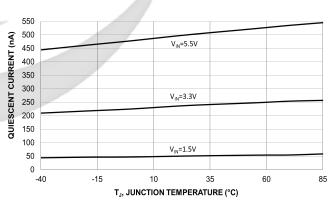
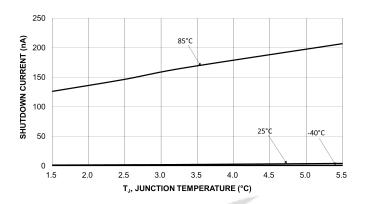



Figure 7. Quiescent Current vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS

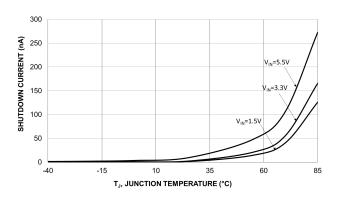


Figure 9. Shutdown Current vs. Temperature

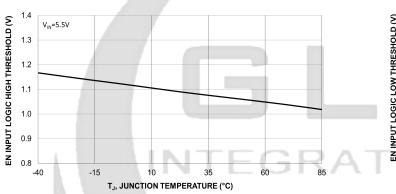


Figure 10. EN Input Logic High Threshold vs. Temperature

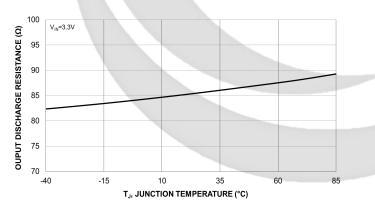
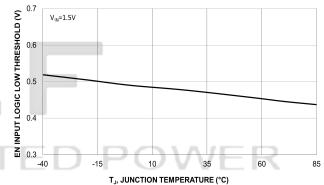
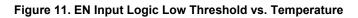




Figure 12. Output Discharge Resistance vs. Temperature GLF1221H

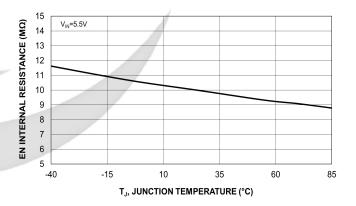
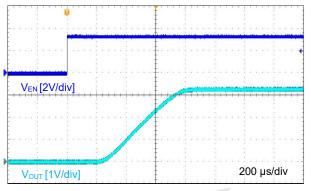
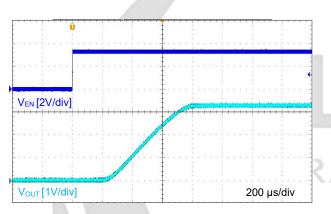




Figure 13. EN Internal Resistance vs. Temperature

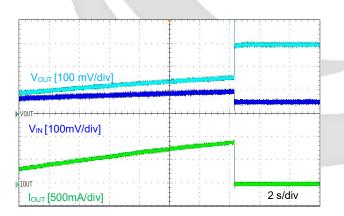


Figure 18. Reverse Current Blocking Threshold $V_{\text{IN}}\text{=}$ 3.3 V, $V_{\text{OUT}}\text{=}$ Up to 3.4 V, $C_{\text{IN}}\text{=}$ 0.1 $\mu\text{F},$ $C_{\text{OUT}}\text{=}0.1$ μF

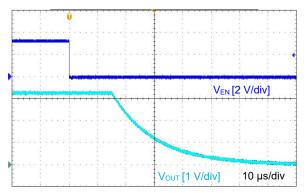


Figure 15. Turn-Off Response, GLF1220H $V_{\text{IN}}{=}3.3$ V, $C_{\text{IN}}{=}1.0$ $\mu\text{F},$ $C_{\text{OUT}}{=}0.1$ $\mu\text{F},$ $R_{\text{L}}{=}150~\Omega$

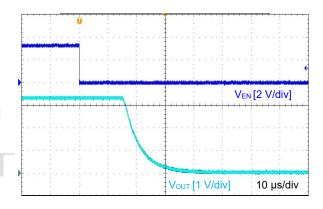


Figure 17. Turn-Off Response, GLF1221H V_{IN}=3.3 V, C_{IN}=1.0 μ F, C_{OUT}=0.1 μ F, R_L=150 Ω

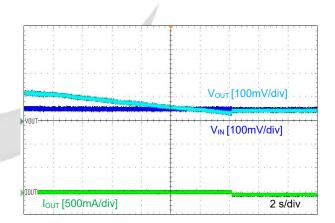


Figure 19. Reverse Current Blocking Release V_{IN} = 3.3 V, V_{OUT} = Down to 3.2 V, C_{IN} = 0.1 µF, C_{OUT} =0.1 µF

APPLICATION INFORMATION

The GLF1220H and GLF1221H are an integrated 1 A, ultra-efficient I_QSmart^{TM} load switch devices with a fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 1.5 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power. The package is a 0.67 mm x 0.67 mm x 0.425 mm wafer level chip scale package, saving space in compact applications. It is constructed using 4 bumps, with a 0.35 mm pitch for manufacturability.

Input Capacitor

The GLF1220H and GLF1221H do not require an input capacitor. However, to reduce the voltage drop on the input power rail caused by transient inrush current at start-up, a 0.1 µF capacitor is recommended to be placed close to the VIN pin. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

The GLF1220H and GLF1221H do not require an output capacitor. However, use of an output capacitor is recommended to mitigate voltage undershoot on the output pin when the switch is turning off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be spaced close to the VOUT and GND pins.

EN pin

The GLF1220H and GLF1221H can be activated by forcing EN pin high level. Note that the EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

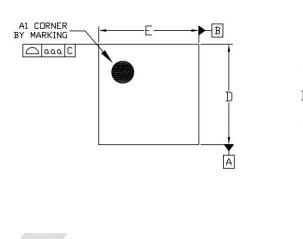
True Reverse Current Blocking

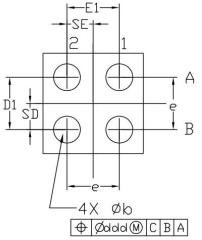
The GLF1220H and GLF1221H have a built-in reverse current blocking protection which always monitors the output voltage level regardless of the status of EN pin to check if it is greater than the input voltage. When the output voltage goes beyond the RCB protection threshold (V_{RCB_TH}), the reverse current blocking function block turns off the switch. Note that some reverse current can occur until the V_{RCB} is triggered. The main switch will resume normal operation when the output voltage drops below the input source by the RCB protection release voltage (V_{RCB_RL}).

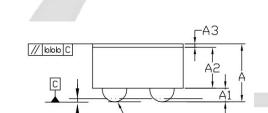
Output Discharge Function

The GLF1221H has an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.

Board Layout


All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operation as well as improve the thermal performance at high load current.



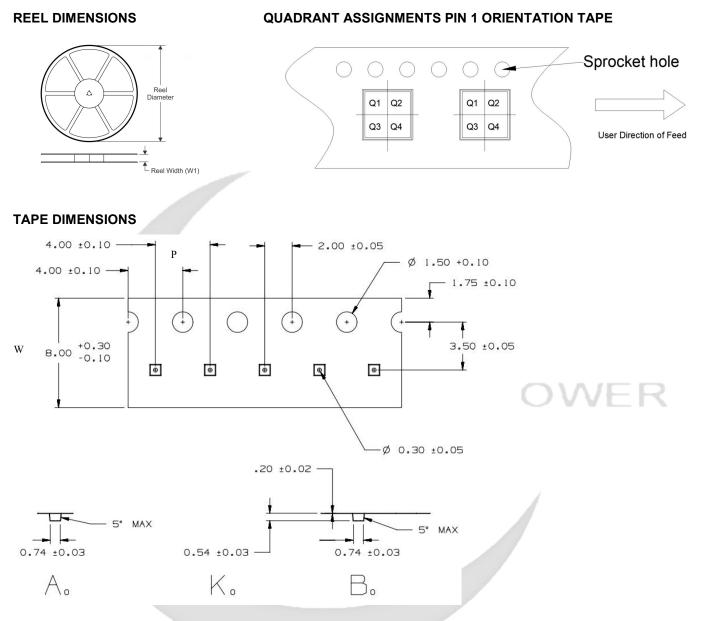

GLF1220H, GLF1221H Nano-Current Consumed, I_QSmart[™] Load Switch

PACKAGE OUTLINE

4X Occc C

SEATING PLANE

ľ		ef.			
	REF.	Min.	Nom.	Max.	
	А	0.380	0.425	0.470	
	A1	0.085	0.100	0.115	
	A2	0.275	0.300	0.325	
	Α3	0.020	0.025	0.030	
	D	0.655	0.670	0.685	
	E	0.655	0.670	0.685	
	D1	0.300	0.350	0.400	
	E1	0.300	0.350	0.400	
	Ь	0.145	0.180	0.215	
	е	0	.350 BS	С	
	SD	0	.175 BS	С	
	SE	0	.175 BS	С	
	Τc	ol. of Fo	rm&Pos	sition	
	ааа		0.10		
	ЬЬЬ	51	0.10		
	ССС	6	0.05		
	ddd		0.05		


Notes

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGRESS)
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 3. A3: BACKSIDE LAMINATION

Nano-Current Consumed, I_QSmart[™] Load Switch

TAPE AND REEL INFORMATION

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	A0	В0	К0	Ρ	w	Pin1
GLF1220H	WLCSP	4	4000	180	9	0.74	0.74	0.54	4	8	Q1
GLF1221H	WLCSP	4	4000	180	9	0.74	0.74	0.54	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

Nano-Current Consumed, I_QSmart[™] Load Switch

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production of the device in question.	Design / Development
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.