

4.5 A Power Mux IC with Reverse Current Blocking Protection and Low Power Consumption

Product Specification

DESCRIPTION

The GLF74139 is a fully integrated power path switch with the automatic and manual selection function. The GLF74139 offers an industry leading reverse current blocking (RCB) function to protect input sources when the VOUT increase higher than VIN abnormally.

The EN pin can be used along with the SEL pin to control two integrated main FETs of the GLF74139. By the combination of these two pins, one of input source selection modes is set to provide power to downstream system seamlessly.

The automatic selection mode chooses a higher input voltage source between two inputs. In the manual selection mode, one of input sources is connected to downstream system.

FEATURES

- Two-Input and Single-Output Power Multiplexer Switch
- Automatic and Manual Input Selection Modes
- Reverse Current Blocking on Each Channel
- No Cross Conduction between Two Input Sources
- Supply Voltage Range: 2.0 V to 5.5 V
- R_{ON}: 20 m Ω Typ at 5.5 V_{IN1} or V_{IN2}
- 4.5 A Continuous Output Current Capability Per Channel
- Ultra-Low Supply Current at Operation

 I_Q : 4 μA Typ at 5.5 V_{IN}

Ultra-Low Stand-by Current

 I_{SD} : 30 nA Typ at 5.5 V_{IN}

Smart Control Pins

 I_{EN} and $I_{\text{SEL}} :$ 10 nA Typ at V_{EN} or $V_{\text{SEL}} > V_{\text{IH}}$

 R_{EN} and R_{SEL} : 500 k Ω Typ

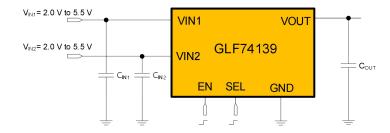
HBM: 6 kV, CDM: 2 kV

APPLICATIONS

- Smart Devices
- Subsystem with Backup Power
- IoT Tracking System

PACKAGE

VIN1	VIN1	VIN1		VIN1	VIN:
(A1)	(A2)	(A3)		(A3)	(A2)
VOUT	VOUT	VOUT		VOUT	VQU
(B1)	(B2)	(B3)		(B3)	(B2)
VIN2	VIN2	VIN2		VIN2	VINZ
(C1)	(C2)	(C3)		(C3)	(C2)
SEL	GND	EN		EN	GNE
(D1)	(D2)	(D3)		(D3)	D2
()	()	\']		
Т.	OP VIEW	ı		В	оттол


VOUT B1 VIN2 C1 SEL D1

1.27 mm x 1.67 mm x 0.55 mm, WLCSP 0.4 mm pitch

DEVICE INFORMATION

Part Number	Top Mark	R _{ON} at 5.5 V _{IN}	Output Current, I _{OUT} Per Channel	Ultra-low I _Q at 5.5 V _{IN}	Output Discharge	Status
GLF74137	TBD	20 mΩ	4.5 A	4 μΑ	70 Ω	On request
GLF74139	EN	20 mΩ	4.5 A	4 μΑ	NA	Released

APPLICATION DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

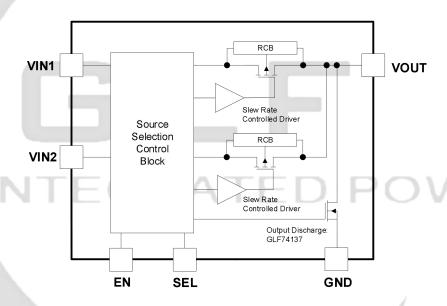
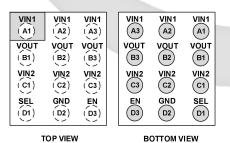



Figure 1. Functional Block Diagram

PIN CONFIGURATION

PIN DEFINITION

Pin#	Name	Description						
A1, A2, A3 VIN1		Switch Input 1 Supply Voltage						
B1, B2, B3	VOUT	Switch Output						
C1, C2, C3	VIN2	Switch Input 2 Supply Voltage						
D1	SEL	Input Source Selection.						
D2	GND	Ground						
D3	EN	Enable Pin						

Figure 2. 1.27mm x 1.67mm x 0.55mm WLCSP

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Pa	Min.	Max.	Unit	
V _{IN1} , V _{IN2} V _{OUT} , V _{EN}	Each Pin Voltage Range to GND	Each Pin Voltage Range to GND			
1	Continuous Current			4.5	Α
Гоит	Pulse, 100 μs pulse and 2 % duty cycle			6.5	Α
P _D	Power Dissipation at T _A = 25 °C		1.2	W	
TJ	Maximum Junction Temperature		150	°C	
T _{STG}	Storage Junction Temperature		-65	150	°C
TA	Ambient Operating Temperature Rang	ge	-40	85	°C
θја	Thermal Resistance, Junction to Ambient			85	°C/W
ESD	Electrostatic Discharge Canability	Human Body Model, JESD22-A114	±6		kV
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	±2	K	

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
$V_{\text{IN1}},V_{\text{IN2}}$	Supply Voltage	2.0	5.5	V
TA	Ambient Operating Temperature Range	-40	+85	°C

ELECTRICAL CHARACTERISTICS

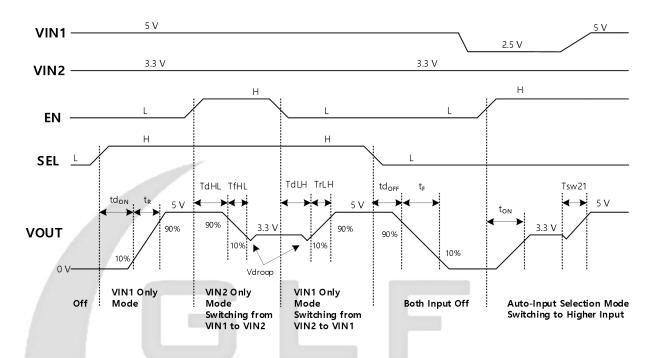
 V_{IN1} = V_{IN2} = 2.0 V to 5.5 V and T_A = 25 °C. Unless otherwise noted

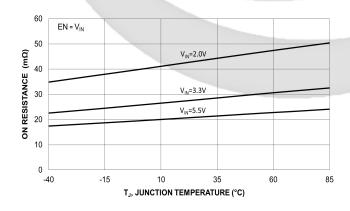
Symbol	Parameter	Conditions		Min	Тур	Max	Units
Basic Oper	ation	1		1		1	
I _{Q1} , I _{Q2}	Quiescent Current	EN = 0 V, SEL = VIN1, VOUT = VIN1 or	$V_{IN2} = 5.5 \text{ V}, \ V_{IN1} < V_{IN2}, \ I_{OUT} = 0 \text{ mA},$		4	6	μΑ
		As above, $T_A = 85 ^{\circ}\text{C}^{(1)}$			4.7		
		V _{IN1,2} = 5.5 V, VOUT = GND, EN = SE	L = 0 V		30	200	
I_{SD1} , I_{SD2}	Shutdown Current	$V_{IN1,2}$ = 5.5 V, VOUT = GND, EN = SE T_A =85 °C $^{(1)}$	EL = 0 V		290		nA
			T _A = 25 °C		20	26	
		V_{IN1} or $V_{IN2} = 5.5$ V, $I_{OUT} = 500$ mA	T _A = 85 °C ⁽¹⁾		25		1
R _{ON}			T _A = 25 °C		23		1
		V_{IN1} or $V_{IN2} = 4.5 \text{ V}$, $I_{OUT} = 500 \text{ mA}$	T _A = 85 °C ⁽¹⁾		26		1
	On-Resistance		T _A = 25 °C			33	mΩ
		V_{IN1} or $V_{IN2} = 3.3 \text{ V}$, $I_{OUT} = 500 \text{ mA}$	$T_A = 85 ^{\circ}\text{C}^{(1)}$		27		1
		V _{IN1} or V _{IN2} = 2.5 V, I _{OUT} = 300 mA			32		-
		,	T _A = 25 °C		34		1
		V_{IN1} or $V_{IN2} = 2.0 \text{ V}$, $I_{OUT} = 300 \text{ mA}$	T _A = 25 °C		43		
V _{IH}	EN and SEL Input Logic High Voltage	V_{IN1} or $V_{IN2} = 2.0 \text{ V to } 5.5 \text{ V}$	DPC	1.2	VI		V
VIL	EN and SEL Input Logic Low Voltage	V_{IN1} or $V_{IN2} = 2.0 \text{ V}$ to 5.5 V				0.45	V
I _{EN} , I _{SEL}	EN, SEL Current	EN or SEL Voltage > V _{IH} , Enabled			10		nA
Ren, Rsel	EN and SEL pull down resistance	EN or SEL Voltage < V _{IH} , Disabled	,		500		kΩ
V _{RCB_TH}	RCB Protection Threshold	V _{OUT} – V _{IN}			35		mV
V_{RCB_RL}	RCB Protection Release	V _{IN} - V _{OUT}			20		IIIV
I _{RVS}	Reverse Current (1)	$V_{IN1} = V_{IN2} = 0$ V, $V_{OUT} = 5.5$ V, EN=SE Current on the input node from VOU			70		nA
R _{DSC}	Quick Output Discharge Resistance	V _{IN1} or V _{IN2} =5.5 V, I _{FORCE} = 10 mA, GI	_F74137		70		Ω
Switching (Characteristics (2)						
V _{TR}	Auto Input Selection Trigger (1)	V _{INX} – V _{INY} , In automatic selection m	ode		290		
t_{dON}	Turn-On Delay				740		μs
t _R	VOUT Rise Time				1		ms
TdHL	High-low Delay (1)				15		μs
TfHL	High-low Fall Time (1)	-			240		μs
Vdroop	V _{IN1} = 5.0 V, V _{IN2} = 3.3 V			100		mV	
TdLH	Low-high Delay (1)	R_L = 150 Ω, C_{OUT} = 10 μF			10		μs
TrLH	Low-high Rise Time (1)				9		μs
td _{OFF}	Turn-Off Delay (1)				80		μs

Notes:

- 1. By design; characterized, not production tested.
- 2. $t_{ON} = t_{dON} + t_{R}$, $t_{OFF} = t_{dOFF} + t_{F}$

TIMING DIAGRAM AND TRUTH TABLE

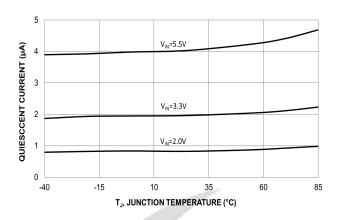



Figure 3. Timing Diagram

SEL EN		Function	VOUT
0 0		Both switches are off.	High-Z
0 1		Auto-Input selection. VOUT is connected to a higher input source automatically.	Higher Voltage between VIN1 and VIN2
1	0	Only VIN1 is selected.	VIN1
1	1	Only VIN2 is selected.	VIN2

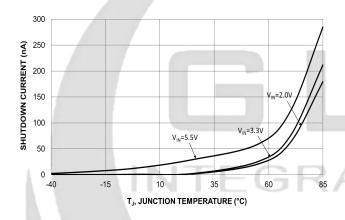
Table 1. Truth Table of Input Source Selection

TYPICAL PERFORMANCE CHARACTERISTICS


Both VIN1 and VIN2 switches are identical.

5 One Supply voltage (v)

Figure 4. On-Resistance vs. Temperature


Figure 5. Quiescent Current vs. Supply Voltage

300 85°C 85°C 200 100 50 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 SUPPLY VOLTAGE (V)

Figure 6. Quiescent Current vs. Temperature

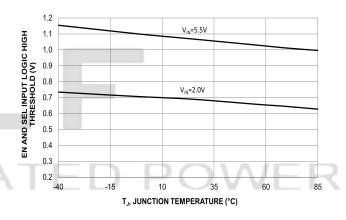
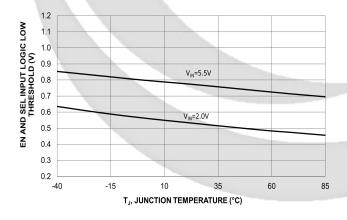



Figure 8. Shutdown Current vs. Temperature

Figure 9. EN and SEL Input Logic High Threshold Vs. Temperature

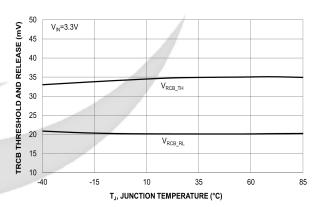
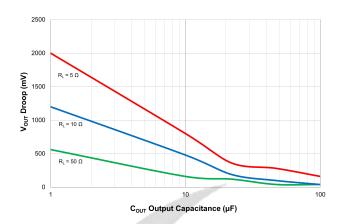
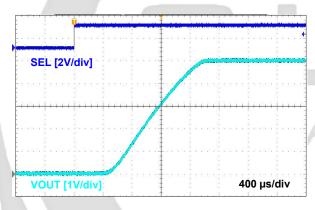



Figure 10. EN and SEL Input Logic Low Threshold vs.
Temperature

Figure 11. Reverse Current vs. Temperature



2500
2000
2000
R_L = 5 Ω
R_L = 5 Ω

1000
R_L = 50 Ω
10 100
C_{OUT} Output Capacitance (μF)

Figure 12. Output Voltage Droop at Switching Over from V_{IN1} (5 V) to V_{IN2} (3.3 V)

Figure 13. Output Voltage Droop at Switching Over from V_{IN2} (3.3 V) to V_{IN1} (5 V)

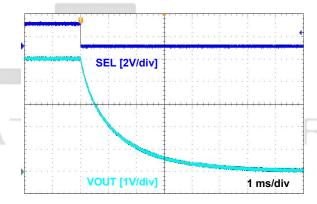
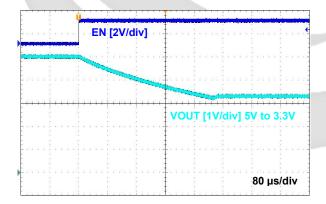



Figure 14. Turn-On Response $V_{\text{IN1}}\text{=}5.0 \text{ V, } C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}10 \text{ }\mu\text{F, } R_{\text{L}}\text{=}150 \text{ }\Omega\text{, } \text{EN=Low}$

Figure 15. Turn-Off Response $V_{\text{IN1}}\text{=-}5.0~V,~C_{\text{IN}}\text{=-}C_{\text{OUT}}\text{=-}10~\mu\text{F},~R_{\text{L}}\text{=-}150~\Omega.~EN\text{=-}Low$

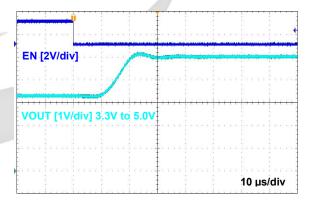
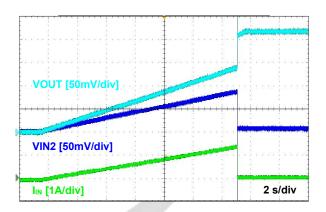



Figure 16. V_{OUT} Switchover from 5 V_{IN} to 3.3 V_{IN} $V_{IN1}{=}5.0$ V, $V_{IN2}{=}3.3$ V, $C_{IN}{=}C_{OUT}{=}10$ $\mu F,$ $R_L{=}150$ Ω

Figure 17. V_{OUT} Switchover 3.3 V_{IN} to 5 V_{IN} V_{IN1} =5.0 V, V_{IN2} =3.3 V, C_{IN} = C_{OUT} =10 μ F, R_L =150 Ω

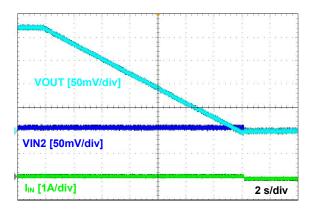


Figure 18. Reverse Current Blocking on Each VIN V_{IN1} or V_{IN2} =3.3 V, V_{OUT} = From 3 V to 3.4 V, C_{IN} = C_{OUT} =10 μ F

Figure 19. Reverse Current Blocking Release V_{IN1} or V_{IN2}=3.3 V, V_{OUT}= From 3 V to 3.4 V, C_{IN}=C_{OUT}=10 µF

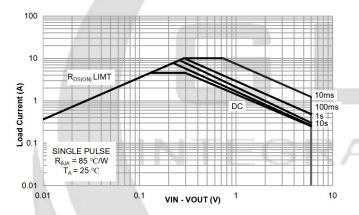


Figure 20. Safe Operating Area

APPLICATION INFORMATION

The GLF74139 is a fully integrated 4.5 A power mux with a fixed slew rate control to limit the inrush current during turn on in the input voltage range from 2.0 V to 5.5 V. Each switch of the GLF74139 has very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power supply. The package is 1.27 mm x 1.67 mm x 0.55 mm wafer level chip scale package saving space in compact applications and it has 12 bumps, 0.4 mm pitch for manufacturing availability.

Input Source Selection

According to the state of SEL and EN pins, the GLF74139 offers the automatic as well as the manual selection mode. In each mode, the VOUT connects to one input source. Do not leave both SEL and EN pins floating.

SEL	EN	Function	VOUT
0	0 Both switches are off.		High-Z
0	1	Auto-Input selection. Vout is connected to a higher input source automatically.	Higher Voltage between VIN1 and VIN2
1	0	Only VIN1 is selected.	VIN1
1	1	Only VIN2 is selected.	VIN2

GLF74139

4.5 A Power Mux IC with RCB and Low Power Consumption

Reverse Current Blocking

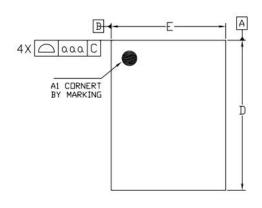
The GLF74139 has a built-in reverse current blocking protection which always monitors the output voltage level regardless of the status of EN pin to check if it is greater than the input voltage. When the output voltage goes beyond the input voltage by the reverse current blocking protection threshold voltage, V_{RCB_TH} that is the reverse current blocking protection trip voltage, the reverse current blocking function block turns off the switch immediately. Note that some reverse current can occur until the V_{RCB_TH} is triggered. The main switch will get back to normal operation when the output voltage drops below the input source by the reverse current blocking protection release voltage.

Smart EN and SEL Control Pin

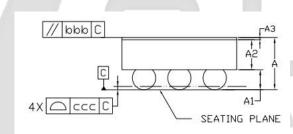
With a control voltage less than the V_{IH} for EN or SEL pin, the internal pull-down resistance (R_{EN} or R_{SEL} = 500 k Ω Typ.) is used to keep control pins from floating and ensure a reliable off state. When a voltage higher than the V_{IH} is applied to EN and SEL pin, the 500 k Ω pull-down resistor will be completely disconnected save unnecessary power consumption and enable the pin function.

Input Capacitor

MLCC 10 μ F capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. The low ESR capacitor is preferred to avoid output oscillation during the switching-over period in the auto-input selection mode when the output current is high. A higher input capacitor value can be used to further attenuate the input voltage drop.


Output Capacitor

MLCC 10 μ F capacitor is recommended to mitigate voltage undershoot on the output pin the moment when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.


Board Layout

All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for VIN, VOUT, and GND will help reduce signal degradation and parasitic effects during dynamic operations as well as improve the thermal performance at high load current.

PACKAGE OUTLINE

TAFF	1 11111	TTOTIL.	IIIUA.
Α	0.500	0.550	0.600
A1	0.175	0.200	0.225
A2	0.300	0.325	0.350
Α3	0.020	0.025	0.030
D	1.655	1.670	1.685
E	1.255	1.270	1.285

Min.

1.150

0.750

REF.

D1

E1

Ь

e

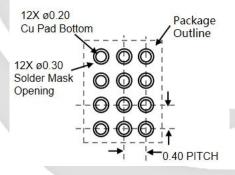
Dimensional Ref.

Nom.

1.200

0.800

0.215 0.265 0.315


0.400 BSC

Max

1.250

0.850

Recommended Footprint

SD	0.200 BSC				
SE	0.000 BSC				
To	ol. of Form&Position				
999	0.10				
bbb	0.10				
ccc	0.05				
ddd	0.05				

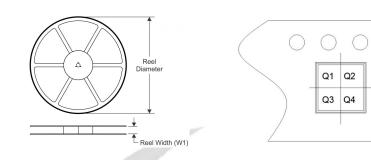
Notes

- 1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGRESS)
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.
- 3. A3: BACKSIDE LAMINATION

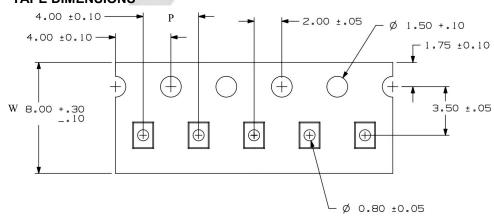
TAPE AND REEL INFORMATION

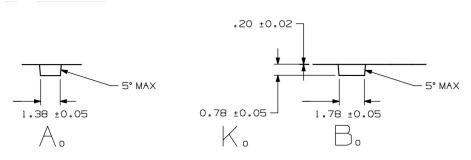
REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE


Q1 Q2

Q3


Q4


Sprocket hole

User Direction of Feed

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	A0	В0	K0	Р	w	Pin1
GLF74137	WLCSP	12	3000	180	9	1.38	1.78	0.78	4	8	Q1
GLF74139	WLCSP	12	3000	180	9	1.38	1.78	0.78	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

GLF74139

4.5 A Power Mux IC with RCB and Low Power Consumption

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Parameters including the typical, minimum, and maximum values are desired, or target. GLF reserves the right to change contents at any time without warning or notification. A target specification will not guarantee the future production of the device.	Design / Development
Preliminary Specification	This is a draft version of a product specification which is under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification will not guarantee the future production of the device.	Qualification
Product Specification	This document represents the characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible for ensuring GLF devices meet their system level and ending product requirements. GLF retains the right to change the information provided in this data sheet without notice.