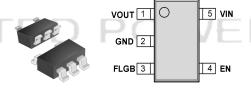


Product Specification

DESCRIPTION

The GLF2331B is an advanced technology fully integrated power switch for applications required precision output current limiting. The GLF2331B features also various protection functions such as under voltage lockout, reverse current blocking (RCB), short circuit protection, and thermal shutdown

The GLF2331B provides a built-in output voltage slew rate control to limit the inrush current and voltage surges. The FLGB output pin can be used to send a signal of fault events to the system controller. The integrated thermal shutdown (TSD) insures complete protection for the switch during output current limit and short circuit conditions. The GLF2331B is an ideal switch for USB power supply.


APPLICATIONS

- USB ports
- Notebooks
- Telecom Systems

FEATURES

- Fixed Constant Output Current Limit, 1.3 A Typ
- Input Range: 2.5 V to 5.5 V
- Low R_{ON}: 53 m Ω Typ. at 5 V_{IN}
- Ultra-Low I_Q: 18 μA Typ. at 5 V_{IN}
- Ultra-Low I_{SD}: 35 nA Typ. at 5 V_{IN}
- Under Voltage Lockout Protection
- Output Voltage Slew Rate Control
- Reverse Current Blocking Protection
- Short Circuit Protection
- · Deglitched Fault Flag Indication
- Integrated Output Discharge Switch
- Thermal Shutdown Protection

PACKAGE

SOT23-5L

DEVICE ORDERING INFORMATION

Part Number	Top Mark	Current Limit I _{LIM}	Output Discharge	Fault Flag FLGB	EN Activity	Package
GLF2331B-T1G7	KE	1.3 A Typ Fixed	300 Ω	Yes	High	SOT23-5L

APPLICATION DIAGRAM

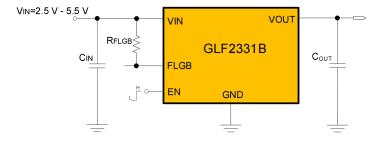


Figure 1. Typical Application

INTEGRATED POWER

FUNCTIONAL BLOCK DIAGRAM

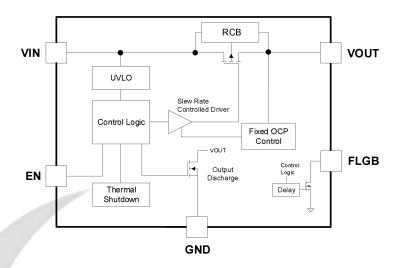


Figure 2. Functional Block Diagram

PIN CONFIGURATION

PIN DEFINITION

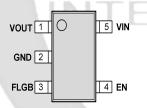


Figure 3. Package and Pin configuration

Pin#	Name	Description
1	VOUT	Switch Output
2	GND	Ground
3	FLGB	Flag pin goes low to indicate OCP, SCP, RCB, UVLO and TSD fault conditions
4 EN		Active high switch output enables to control the switch
5 VIN		Switch Input. Supply voltage for IC

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Pa	Min.	Max.	Unit	
$V_{\text{IN}}, V_{\text{OUT}}, V_{\text{EN}}$	V _{IN} , V _{OUT} , V _{EN} to GND	- 0.3	6	V	
T _{STG}	Storage Junction Temperature	Storage Junction Temperature			
T _A	Operating Temperature Range	- 40	85	°C	
θја	Thermal Resistance, Junction to Amb		180	°C/W	
ESD	Electrostatic Discharge Canability	Human Body Model, JESD22-A114	± 8		kV
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	± 2		KV

GLF2331B

ELECTRICAL CHARACTERISTICS

Values are at V_{IN} = 5.0 V and T_A = 25 °C. Unless otherwise noted

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
Basic Oper	ation			'			
V _{IN}	Supply Voltage			2.5		5.5	V
ΙQ	Quiescent Current	V _{EN} = High, I _{OUT} = 0 mA			18	25	μA
I _{SD}	Shutdown Current	V _{EN} = Low, I _{OUT} = 0 mA			35	80	nA
		V_{IN} = 5.0 V, I_{OUT} = 500 mA T_A = 25 °C T_A = 85 °C T_A			53	60	
_	Ron On-Resistance				63		
Ron		.,	T _A = 25°C		61	70	mΩ
		V _{IN} = 3.3 V, I _{OUT} = 500 mA	T _A = 85 °C ⁽¹⁾		73		1
R _{DSC}	Output Discharge Resistance	V _{EN} = Low , I _{FORCE} = 10 mA	-		300		Ω
V _{IH}	EN Input Logic High Voltage	V _{IN} = 2.5 V to 5.5 V		1.2			V
V _{IL}	EN Input Logic Low Voltage	V _{IN} = 2.5 V to 5.5 V				0.6	V
R _{EN}	EN pull down resistance	Internal Resistance			10	12	ΜΩ
I _{EN}	EN Source or Sink Current	V _{EN} = 5.5 V			0.55	0.8	μA
V_{FLGB}	FLGB Output Low Voltage	I _{FLGB} = 0.5 mA				100	mV
I _{FLGB}	FLGB Output High Leakage	V _{FLGB} = 5.5 V				50	nA
		Delay time for assertion at	over current		8		ms
t _{FLGB}	FLGB Output Delay Time (1)	Delay time for assertion at short circuit and thermal shutdown condition			120		μs
Protection	LINITE	CDAT			Λ/Ι		
		Input Rising		\forall	2.3		V
V _{UVLO}	Under Voltage Lockout Voltage	Input Falling			2.1		V
I _{LIM}	Over Current Limit			1.2	1.3	1.4	А
V _{RCB_TH}	Reverse Current Blocking Protection Trip Voltage	V _{OUT} - V _{IN}			40		
V _{RCB_RL}	Reverse Current Blocking Protection Release Voltage	V _{IN} - V _{OUT}			25		- mV
I _{RCB}	Reverse Current Blocking Protection Leakage	V _{OUT} - V _{IN} > V _{RCB}				1	μA
TSD	Thermal Shutdown	20 °C Hysteresis (1)			140		°C
Switching C	Characteristics (2)	· · · · · · · · · · · · · · · · · · ·			ı	'	-
t _{dON}	Turn-On Delay				160		
t _R	V _{OUT} Rise Time	D 45000			560		μs
t _{dOFF}	Turn-Off Delay	R_{OUT} = 150 Ω, C_{OUT} = 1.0 μF			14		
t _F	V _{OUT} Fall Time				240		1

Notes: 1. By design; characterized; not production tested. 2. Switching Timing Diagram

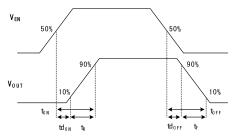
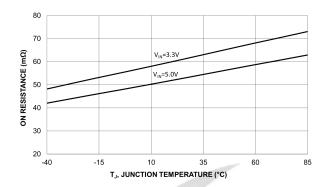



Figure 4. Switching Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

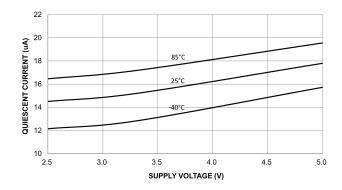


Figure 5. On-Resistance vs. Temperature

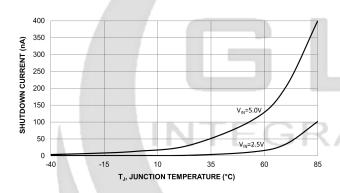


Figure 6. Quiescent Current vs. Supply Voltage

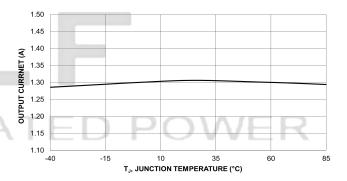


Figure 7. Shutdown Current vs. Temperature

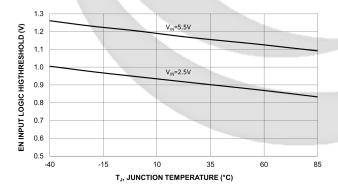


Figure 8. Over Current Limit vs. Temperature

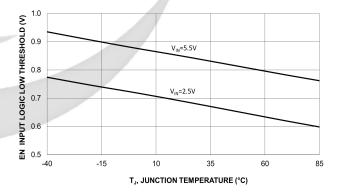


Figure 9. EN Input Logic High Threshold

Figure 10. EN Input Logic Low Threshold

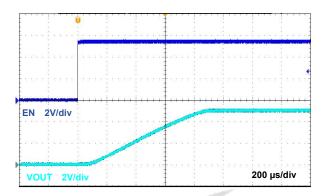


Figure 11. Turn-On Response $V_{\text{IN}}\text{=}5.0~V,~C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}1.0~\mu\text{F},~R_{\text{L}}\text{=}150~\Omega$

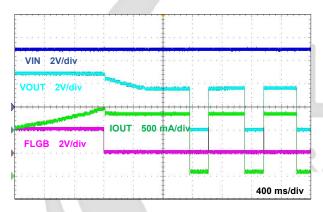


Figure 13. Current Limit Response V_{IN}=5.0 V, C_{IN}=C_{OUT}=1.0 µF

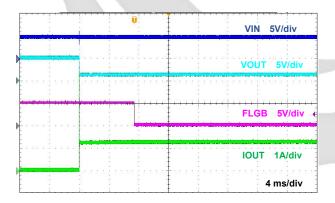


Figure 15. FLGB Response with OCP $V_{\text{IN}}\text{=}5.0 \text{ V, } C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}1.0 \text{ }\mu\text{F}$

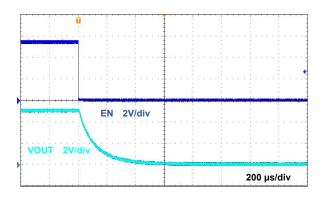


Figure 12. Turn-Off Response $V_{\text{IN}}\text{=}5.0 \text{ V, } C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}1.0 \text{ }\mu\text{F, } R_{\text{L}}\text{=}150 \text{ }\Omega$

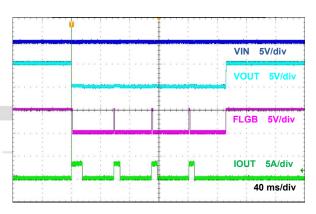


Figure 14. Short Circuit Response V_{IN} =5.0 V, C_{IN} = C_{OUT} =1.0 μF , R_L =0 Ω

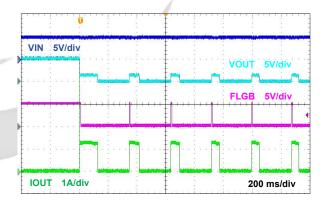


Figure 16. Thermal Shutdown Response V_{IN} =5.0 V, C_{IN} = C_{OUT} =1.0 μF

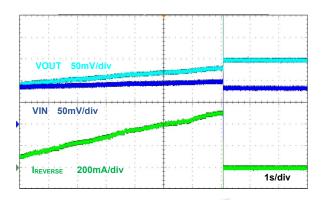


Figure 17. Reverse Current Blocking Threshold V_{IN} =3.3 V, V_{OUT} =Up to 3.4 V, C_{IN} = C_{OUT} =1.0 μ F

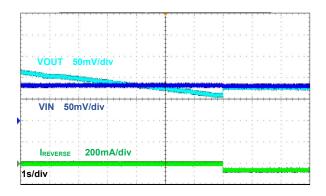


Figure 18. Reverse Current Blocking Release $V_{IN}=3.3 \text{ V}$, $V_{OUT}=Down \text{ to } 3.2 \text{ V}$, $C_{IN}=C_{OUT}=1.0 \mu\text{F}$

APPLICATION INFORMATION

The GLF2331B is an advanced technology fully integrated power switch for applications required for precision output current limiting. It features also various protection functions such as under voltage lockout, reverse current blocking (RCB), short circuit protection, and thermal shutdown.

Current Limiting and Short Circuit Protection

The GLF2331B limits the output current at 1.3 A typ at an output over current condition. During the constant currentlimit condition, the junction temperature of the GLF2331B increases. The thermal shutdown protection (TSD) turns off the device when the junction temperature exceeds 140 °C. As the junction temperature cools down to 120 °C, the device is turned on again. The short circuit protection will take action immediately to shut down the device once a short circuit on the output node is detected. The GLF2331B retries to turn on and limits the output current until the short circuit condition is removed or the device is controlled by the thermal shutdown protection as the junction temp exceeds the temperature threshold.

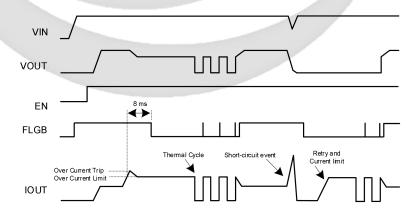


Figure 19. Over Current and Short Circuit Protection

Reverse Current Blocking

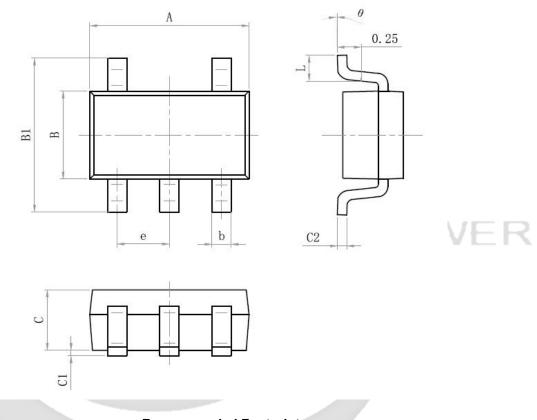
The GLF2331B has a built-in reverse current blocking protection which always monitors the output voltage level regardless of the status of EN pin to check if it is greater than the input voltage. When the output voltage goes above the input voltage by the reverse current blocking protection threshold (V_{RCB_TH}), the device turns off. Note that some reverse current can occur until the V_{RCB_TH} is triggered. The main switch will resume normal operation when the output voltage drops below the input source by the RCB protection release voltage (V_{RCB_RL}).

Fault Flag Response

The output of the open drain FLGB pin goes active low for any of following fault conditions: output current limit, output short-circuit, reverse current blocking, or thermal shutdown. The GLF2331B is designed to avoid false FLGB reporting by using an internal 8 ms deglitch delay for the current limit condition and 120 µs delay for the short circuit and over temperature conditions. The FLGB output remains low until over-current or over-temperature condition is removed. When short circuit fault conditions occur, the device is turned off immediately and will retry to start. The FLGB output is asserted and de-asserted following the short circuit protection. Once the output fault is resolved, the FLGB returns to normal.

EN Pin

The GLF2331B can be activated by EN pin high. Note that the EN pin has an internal pull-down resistor to maintain a reliable status without EN signal applied from an external controller.

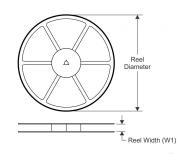

Input and Output Capacitor

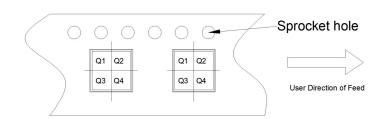
A minimum 1 μ F input capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop. Also, a minimum 1 μ F output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.

PACKAGE OUTLINE

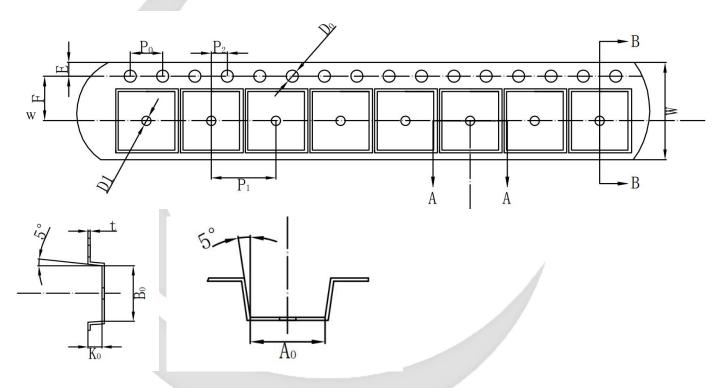
Size Mark	Min(mm)	Max(mm)	Size Mark	Min(mm)	Max(mm)
A	2.82	3.02	С	1.05	1.15
е	0.9	95 (BSC)	C1	0.03	0.15
b	0.28	0.45	C2	0.12	0.23
В	1.50	1.70	L	0.35	0.55
B1	2, 60	3, 00	θ	0°	8°

Recommended Footprint





TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	A0	В0	K0	P1	w	Pin1
GLF2331B-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status		
Target Specification				
Preliminary Specification				
Product Specification	This document represents the characteristics of the device.	Production		

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible for ensuring GLF devices meet their system level and ending product requirements. GLF retains the right to change the information provided in this data sheet without notice.