

2.5 A, High Precision Current Limit Power Switch

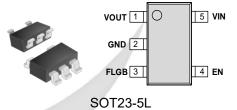
Product Specification

DESCRIPTION

The GLF2351B and GLF2353B are advanced technology fully integrated power switch for applications required precision output current limiting. The GLF2351B and GLF2353B features also various protection functions such as under voltage lockout, reverse current blocking (RCB), short circuit protection, and thermal shutdown.

The GLF2351B and GLF2353B provide a built-in output voltage slew rate control to limit the inrush current and voltage surges. The FLGB output pin can be used to send a signal of fault events to the system controller. The integrated thermal shutdown (TSD) insures complete protection for the switch during output current limit and short circuit conditions. The GLF2351B and GLF2353B are ideal switch for USB power supply.

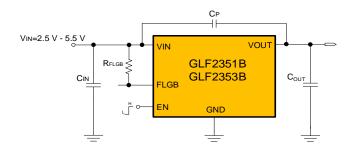
FEATURES


- Input Range: 2.5 V to 5.5 V
- Fixed Constant Output Current Limit, 2.55 A Typ
- Low R_{ON}: 40 m Ω Typ. at 5 V_{IN}, GLF2351B 53 m Ω Typ. at 5 V_{IN}, GLF2353B
- Ultra-Low I_Q: 17 μA Typ. at 5 V_{IN}
- Ultra-Low I_{SD}: 60 nA Typ. at 5 V_{IN}
- Under Voltage Lockout Protection
- Output Voltage Slew Rate Control
- Reverse Current Blocking Protection
- Short Circuit Protection
- Deglitched Fault Flag Indication
- Integrated Output Discharge Switch
- Thermal Shutdown Protection
- IEC 62368-1: 2018 CB Certification

No. SG SGS-00506

APPLICATIONS

- USB ports
- Notebooks
- Telecom Systems


PACKAGE

DEVICE ORDERING INFORMATION

Part Number	Top Mark	Ron (Typ) at 5V	Current Limit ILIM	Short Circuit Protection behavior	Output Discharge	EN Activity	Package
GLF2351B-T1G7	JF	40 mΩ	2 FF A Fixed	Latch off	300 Ω	High	SOT23-5L
GLF2353B-T1G7	GN	53 mΩ	2.55 A Fixed	Auto retry	97 Ω	High	SOT23-5L

APPLICATION DIAGRAM

Note: $Cp = 1 \mu F$ is recommended to mitigate electrical noises when load current changes abruptly.

Figure 1. Typical Application

FUNCTIONAL BLOCK DIAGRAM

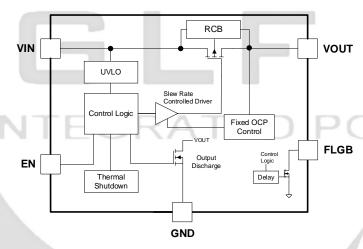


Figure 2. Functional Block Diagram

PIN CONFIGURATION

PIN DEFINITION

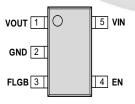


Figure 3. Package and Pin configuration

Pin#	Name	Description
1	VOUT	Switch Output
2	GND	Ground
3	FLGB	Flag pin goes low to indicate OCP, SCP, RCB, UVLO and TSD fault conditions
4	EN	Active high switch output enables to control the switch
5	VIN	Switch Input. Supply voltage for IC

2.5 A, High Precision Current Limit Power Switch

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	P	Min.	Max.	Unit	
VIN, VOUT, VEN	VIN, VOUT, VEN to GND	- 0.3	6	V	
T _{STG}	Storage Junction Temperature	- 65	150	°C	
TA	Operating Temperature Range	- 40	85	°C	
θја	Thermal Resistance, Junction to A		180	°C/W	
ESD	Floatroatatic Discharge Canability	Human Body Model, JESD22-A114	± 8		kV
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	± 2		ΚV

ELECTRICAL CHARACTERISTICS

Values are at $V_{IN} = 5.0 \text{ V}$ and $T_A = 25 \,^{\circ}\text{C}$. Unless otherwise noted

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
Basic Oper	ation			•			
VIN	Supply Voltage			2.5		5.5	V
ΙQ	Quiescent Current	V _{EN} = High, I _{OUT} = 0 mA			17	25	μA
I _{SD}	Shutdown Current	V _{EN} = Low, I _{OUT} = 0 mA			60	100	nA
		V _{IN} = 5.0 V, I _{OUT} = 500 mA,	T _A = 25 °C		40	50	
		GLF2351B	T _A = 85 °C ⁽¹⁾		48		
	LINITE	V _{IN} = 3.3 V, I _{OUT} = 500 mA,	T _A = 25°C		46	56	İ
		GLF2351B	$T_A = 85 ^{\circ}C^{(1)}$		55		_
Ron	On-Resistance	V _{IN} = 5.0 V, I _{OUT} = 500 mA,	T _A = 25 °C		53	61	mΩ
		GLF2353B	T _A = 85 °C ⁽¹⁾		61		
	V A	V _{IN} = 3.3 V, I _{OUT} = 500 mA,	T _A = 25 °C		60	66	
		GLF2353B	T _A = 85 °C ⁽¹⁾		68		
Б	0 1 15: 1 5 : 1	V _{EN} = Low , I _{FORCE} = 10 mA,	GLF2351B		300		
R _{DSC}	Output Discharge Resistance	V _{EN} = Low , I _{FORCE} = 10 mA,		/	97	120	Ω
V _{IH}	EN Input Logic High Voltage	V _{IN} = 2.5 V to 5.5 V		1.2			V
V _{IL}	EN Input Logic Low Voltage	V _{IN} = 2.5 V to 5.5 V				0.6	V
Ren	EN pull down resistance	Internal Resistance, GLF2	351B	7	10	13	ΜΩ
I _{EN}	EN Source or Sink Current	V _{EN} = 5.5 V, GLF2351B			0.5	8.0	μA
V _{FLGB}	FLGB Output Low Voltage	I _{FLGB} = 0.5 mA				100	mV
I _{FLGB}	FLGB Output High Leakage	V _{FLGB} = 5.5 V				50	nA
		Delay time for assertion at	over current		8		ms
t _{FLGB}	FLGB Output Delay Time (1)	Delay time for assertion at and thermal shutdown con			120		μs
Protection						l .	
		Input Rising			2.3		V
V_{UVLO}	Under Voltage Lockout Voltage	Input Falling			2.1		V
Іым	Over Current Limit			2.35	2.55	2.75	Α
Isc	Short Circuit Current Detection (1)				4.6		Α
V _{RCB_TH}	Reverse Current Blocking Protection Trip Voltage	Vout - Vin			35		mV
V _{RCB_RL}	Reverse Current Blocking Protection Release Voltage	Vin - Vout			22		mV
I _{RCВ}	Reverse Current Blocking Protection Leakage	Vout - VIN > VRCB				1	μA
TSD	Thermal Shutdown Threshold				140		°C
Hyst	Thermal Shutdown Release Hysteresis				20		°C

ELECTRICAL CHARACTERISTICS (Continued)

Values are at V_{IN} = 5.0 V and T_A = 25 °C. Unless otherwise noted

Symbol	Parameter	Conditions		Тур.	Max.	Units		
Switching Characteristics (2)								
t _{dON}	Turn-On Delay			160				
t _R	V _{OUT} Rise Time	R _{OUT} = 150 Ω, C _{OUT} = 1.0 μF		590				
tdOFF	Turn-Off Delay			16		μs		
4_	V Foll Time	R _{OUT} = 150 Ω, C _{OUT} = 1.0 μF, GLF2351B		200				
tF	Vout Fall Time	R _{OUT} = 150 Ω, C _{OUT} = 1.0 μF, GLF2353B		118				

Notes: 1. By design; characterized; not production tested. 2. Switching Timing Diagram.

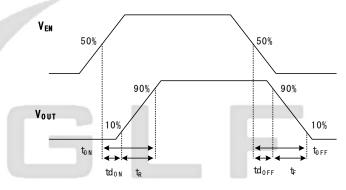
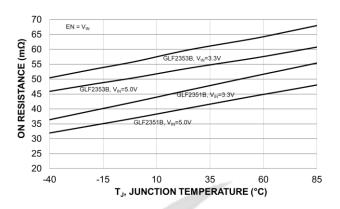



Figure 4. Switching Timing Diagram

TYPICAL PERFORMANCE CHARACTERISTICS

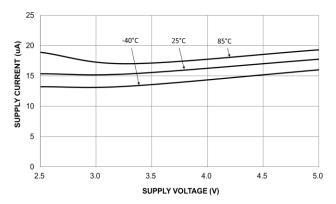
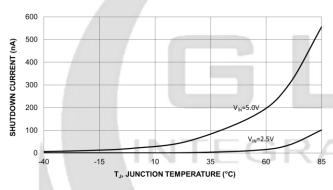



Figure 5. On-Resistance vs. Temperature

Figure 6. Quiescent Current vs. Supply Voltage

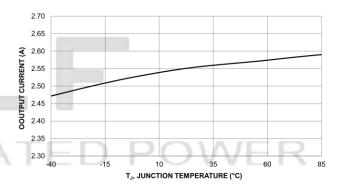
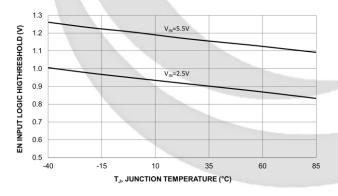



Figure 7. Shutdown Current vs. Temperature

Figure 8. Over Current Limit vs. Temperature

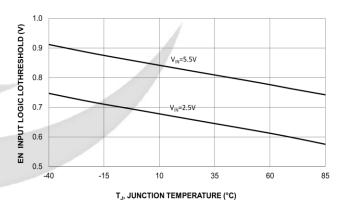


Figure 9. EN Input Logic High Threshold

Figure 10. EN Input Logic Low Threshold

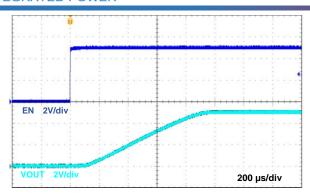
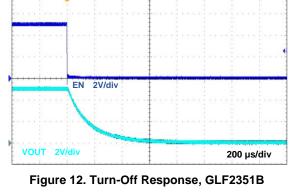



Figure 11. Turn-On Response, GLF2351B VIN=5.0 V, CIN=COUT=1.0 μ F, RL=150 Ω

VIN=5.0 V, CIN=COUT=1.0 μ F, RL=150 Ω

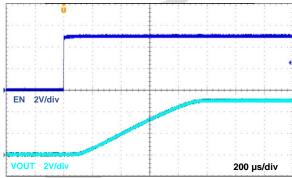


Figure 13. Turn-On Response, GLF2353B VIN=5.0 V, CIN=COUT=1.0 μ F, RL=150 Ω

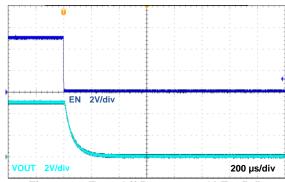
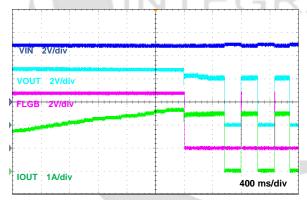



Figure 14. Turn-Off Response, GLF2353B V_{IN}=5.0 V, C_{IN}=C_{OUT}=1.0 μ F, R_L=150 Ω

Figure 15. Current Limit Response VIN=5.0 V, CIN=COUT=1.0 µF

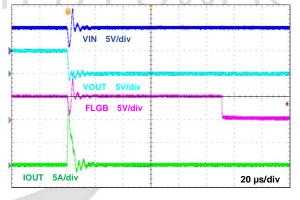


Figure 16. Short Circuit Response, GLF2351B Vin=5.0 V, Cin=Cout=1.0 μ F, RL=0 Ω

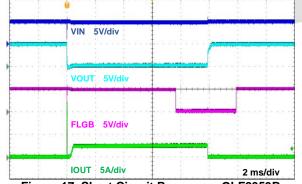


Figure 17. Short Circuit Response, GLF2353B V_{IN} =5.0 V, C_{IN} = C_{OUT} =1.0 μF

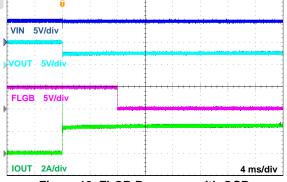
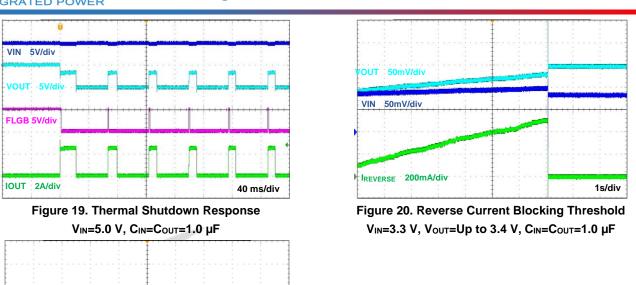



Figure 18. FLGB Response with OCP V_{IN} =5.0 V, C_{IN} = C_{OUT} =1.0 μ F

2.5 A, High Precision Current Limit Power Switch

APPLICATION INFORMATION

200mA/div

VOUT 50mV/div

VIN 50mV/div

The GLF2351B and GLF2353B are advanced technology fully integrated power switch for applications required for precision output current limiting. It features also various protection functions such as under voltage lockout, reverse current blocking (RCB), short circuit protection, and thermal shutdown.

1s/div

Current Limiting and Short Circuit Protection

The GLF2351B and GLF2353B limit the output current at 2.55 A at an output over current condition. During the constant current-limit condition, the junction temperature of the GLF2351B and GLF2353B increases. The thermal shutdown protection (TSD) turns off the device when the junction temperature exceeds 140 °C. As the junction temperature cools down to 120 °C, the device is turned on again. The short circuit protection GLF2351B will take action immediately to shut down the device once a short circuit on the output node is detected. The device remains off until power is cycled or the EN pin is toggled. The short circuit protection GLF2353B enter the Auto retry logic until the short circuit is removed, the VOUT will automatically return to normal.

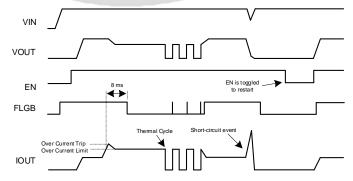


Figure 22. Over Current and Short Circuit Protection, GLF2351B

2.5 A, High Precision Current Limit Power Switch

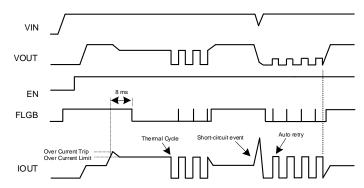


Figure 23. Over Current and Short Circuit Protection, GLF2353B

Reverse Current Blocking

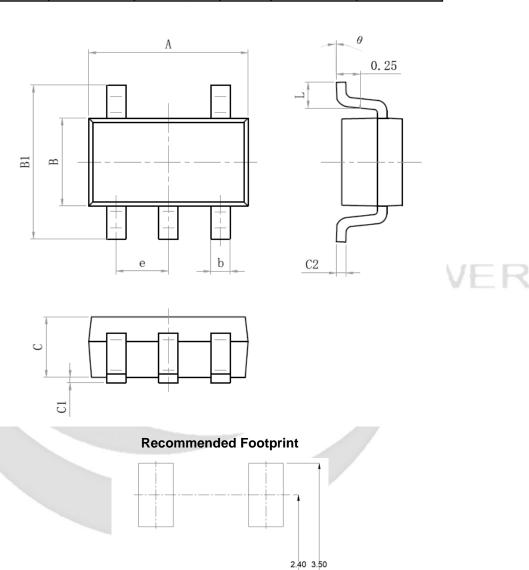
The GLF2351B and GLF2353B have a built-in reverse current blocking protection which always monitors the output voltage level regardless of the status of EN pin to check if it is greater than the input voltage. When the output voltage goes beyond the input voltage by the reverse current blocking protection threshold voltage (V_{RCB_TH}), the reverse current blocking function block turns off the switch. Note that some reverse current can occur until the V_{RCB_TH} is triggered. The main switch will resume normal operation when the output voltage drops below the input source by the reverse current blocking protection release voltage (V_{RCB_RL}).

Fault Flag Response

The output of the open drain FLGB pin goes active low for any of following fault conditions: output current limit, output short-circuit, reverse current blocking, or thermal shutdown. The GLF2351B and GLF2353B are designed to avoid false FLGB reporting by using an internal 8 ms deglitch delay for the current limit condition and 120 µs delay for the short circuit and over temperature conditions. The FLGB output remains low until over-current or over-temperature condition is removed. When short circuit fault conditions occur, the device is latched-off and the FLGB output remains low. The FLGB signal is de-asserted once device power is cycled or the EN pin is toggled and the device resumes normal operation.

EN pin

The GLF2351B and GLF2353B can be activated by EN pin high. Only GLF2351B has an internal pull-down resistor on the EN pin to maintain a reliable status without a signal from an external controller.

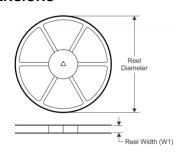

Input and Output Capacitor

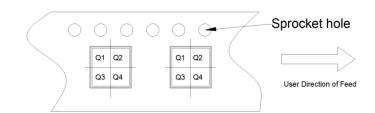
A minimum 1 μ F input capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop. Also, a minimum 1 μ F output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the VOUT and GND pins.

GLF2351B, GLF2353B 2.5 A, High Precision Current Limit Power Switch

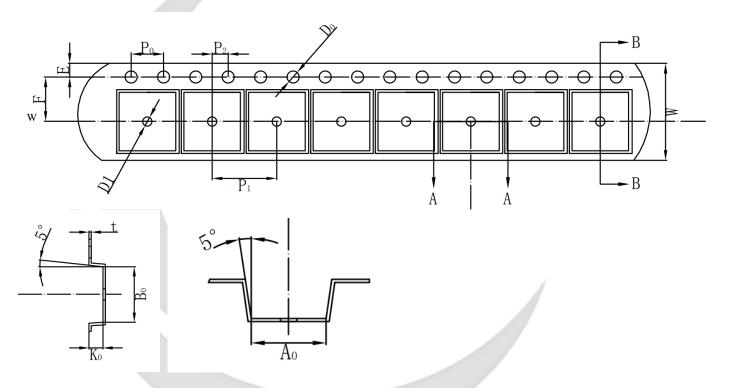
PACKAGE OUTLINE

Size Mark	Min(mm)	Min(mm) Max(mm) Mar		Min(mm)	Max(mm)
A	2.82	3.02	С	1.05	1.15
е	0.9	95 (BSC)	C1	0.03	0.15
b	0.28	0.45	C2	0.12	0.23
В	1.50	1.70	L	0.35	0.55
B1	2.60	3.00	θ	0°	8°




0.95

TAPE AND REEL INFORMATION


REEL DIMENSIONS

QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE

TAPE DIMENSIONS

Device	Package	Pins	SPQ	Reel Diameter (mm)	Reel Width W1	Α0	В0	K0	P1	W	Pin1
GLF2351B-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3
GLF2353B-T1G7	SOT23-5	5	3000	178	9	3.25	3.30	1.38	4	8	Q3

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P1: Pitch between successive cavity centers

2.5 A, High Precision Current Limit Power Switch

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status
Target Specification	This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Parameters including the typical, minimum, and maximum values are desired, or target. GLF reserves the right to change contents at any time without warning or notification. A target specification will not guarantee the future production of the device.	Design / Development
Preliminary Specification	,	
Product Specification	This document represents the characteristics of the device.	Production

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible for ensuring GLF devices meet their system level and ending product requirements. GLF retains the right to change the information provided in this data sheet without notice.