

Product Specification

DESCRIPTION

The GLF74520 is an integrated power multiplexer switch with dual independent power switches connected to a single output pin to enable seamless transition between two input sources.

The GLF74520 provides an automatic selection mode as well as a manual selection mode by the combination of the logic input pins of EN and SEL. The EN input pin is used along with the select (SEL) input pin to select the automatic switching function, select VIN1 only, select VIN2 only, or turn both switches off. In the automatic selection mode, the GLF74520 automatically selects the higher input voltage source out of two input DC power supplies.

The GLF74520 features an ultra-efficient I_QSmart^{TM} technology that supports the lowest R_{ON} , quiescent current (I_Q) and shutdown current (I_{SD}) in the industry. Low R_{ON} reduces conduction losses, while low I_Q and I_{SD} solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The GLF74520 blocks any cross conduction current between two input sources. When the switch is disabled, the GLF74520 prevents the reverse current to the input source from the output at any higher Vout than Vin condition.

The GLF74520 utilizes chip scale package technology with 6 bumps in a 0.97 mm x 1.47 mm x 0.55 mm package size with a 0.5 mm bump pitch.

FEATURES

- Two-Input and Single-Output Power Multiplexer
 Switch
- Automatic and Manual Input Selection Mode
- Supply Voltage Range: 1.5 V to 5.5 V 6 V_{abs} Max
- R_{ON}: 35 mΩ Typ. at 5.5 V_{IN1} or V_{IN2}

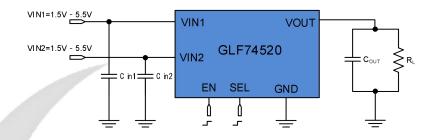
43 m Ω Typ. at 3.3 V_{IN1} or V_{IN2}

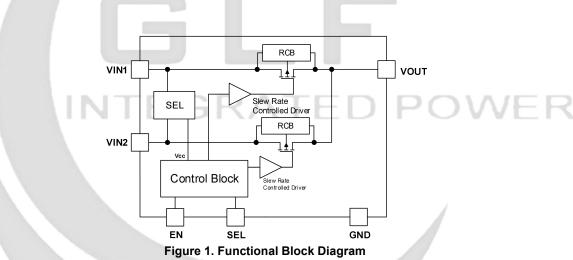
- 2.5 A Continuous Output Current Capability Per Channel
- Ultra-Low Supply Current at Operation

 I_Q : 4 µA Typ at 5.5 V_{IN}

- Ultra-Low Stand-by Current I_{SD}: 20 nA Typ at 5.5 V_{IN}
- Smart Control Pins
 I_{EN} and I_{SEL}: 3 nA Typ at V_{EN} or V_{SEL} > V_{IH}
 - R_{EN} and R_{SEL} : 500 k Ω Typ
- No Cross Conduction Between Two Inputs
- Reverse Current Blocking when Disabled
- Operating Temperature Range: -40 to 85 °C
- HBM: 6 kV, CDM: 2 kV

APPLICATIONS


- Wearables / Hearables
- Smart IoT Devices
- Portable Devices


DEVICE ORDERING INFORMATION

Part Number	Top Mark	R _{ON} at 5.5 V _{IN}	Output Current, Iout	Ultra-low $I_{\rm Q}$ at 5.5 $V_{\rm IN}$
GLF74520	AR	$35\ m\Omega$	2.5 A	4 μΑ

APPLICATION DIAGRAM

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

EN	VIN1	VIN1	EN
(A1)	(A2)	(A2)	(A1)
SEL	VOUT	VOUT	SEL
(в1)	(В2)	(В2)	(B1)
GND	VIN2	VIN2	GND
(C1)	(C2)	(C2)	(C1)
TOP	VIEW	вотто	M VIEW

Pin #	Name	Description
A1	EN	Enable to control the switch. Do not leave the EN pin floating.
A2	VIN1	Switch Input 1
B1	SEL	Input Source Selection. Do not leave the SEL pin floating.
B2	VOUT	Switch Output
C1	GND	Ground
C2	VIN2	Switch Input 2

PIN DEFINITION

Figure 2. 0.97mm x 1.47mm x 0.55mm WLCSP

ABSOLUTE MAXIMUM RATINGS

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

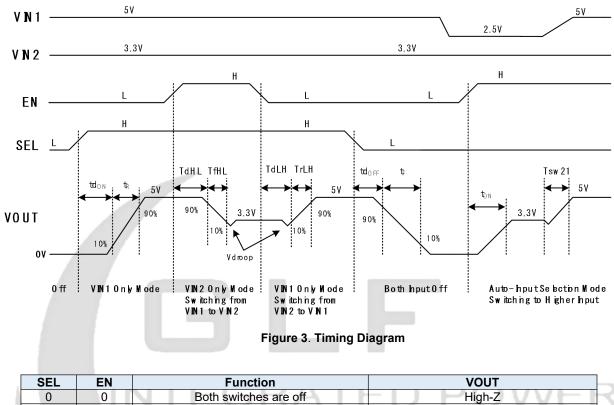
Symbol	Parameter			Max.	Unit
V _{IN1} , V _{IN2} V _{OUT} , EN	Each Pin Voltage Range to GND			6	V
L	Maximum Continuous Switch Current		2.5	A	
Ι _{ουτ}	Pulse, 100 us pulse and 2 % duty cyc		4.5	A	
PD	Power Dissipation at T _A = 25°C		1.2	W	
T _{STG}	Storage Junction Temperature	-65	150	°C	
T _A	Operating Temperature Range	-40	85	°C	
θ _{JA}	Thermal Resistance, Junction to Amb		85	°C/W	
	Human Body Model, JESD22-A114				
ESD	Electrostatic Discharge Capability	2		kV	

Notes: 1. The thermal resistance depends on the PCB layout and heat dissipation.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
V _{IN1} , V _{IN2}	Supply Voltage	1.5	5.5	V
T _A	Ambient Operating Temperature	-40	+85	°C

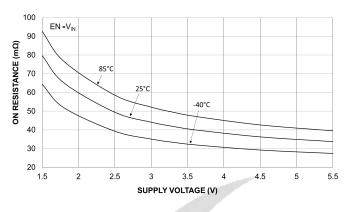
ELECTRICAL CHARACTERISTICS


 V_{IN1} = V_{IN2} = 1.5V to 5.5V and T_{A} = 25°C. Unless otherwise noted

Symbol	Parameter	Conditions			Тур.	Max.	Units			
Basic Oper	ation			•						
Iq1, Iq2	Quiescent Current	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		4	5.0	μA				
		As above, Ta = 85°C ⁽¹⁾			4.7					
		V _{IN1,2} = 5.5 V, V _{OUT} = GND, EN = SE	EL = 0 V		20	50				
I _{SD1} , I _{SD2}	Shutdown Current	$V_{IN1,2}$ = 5.5 V, V_{OUT} = GND, EN = SEL = 0 V, Ta=85 °C ⁽¹⁾			500		nA			
			Ta = 25 °C		35	40	-			
	On-Resistance	V_{IN1} or V_{IN2} = 5.5 V I_{OUT} = 500 mA	Ta = 85 °C ⁽¹⁾		40					
			Ta = 25 °C		37	42				
_		V_{IN1} or V_{IN2} = 4.5 V, I_{OUT} = 500 mA	Ta = 85 °C (1)		42		- mΩ			
Ron		V_{IN1} or V_{IN2} = 3.3 V, I_{OUT} = 500 mA	Ta = 25 °C		43	49				
			Ta = 85 °C ⁽¹⁾		50					
1	INTE	V_{IN1} or V_{IN2} = 2.5 V, I_{OUT} = 300 mA	Ta = 25 °C	M	51	57	57			
		V_{IN1} or V_{IN2} = 1.5 V, I_{OUT} = 100 mA	Ta = 25 °C		82					
Vih	EN, SEL Input Logic High Voltage			1.3			V			
VIL	EN, SEL Input Logic Low Voltage					0.4	V			
I _{EN} , I _{SEL}	EN, SEL Current	V_{EN} or V_{SEL} > V_{IH} , Enabled			3	20	nA			
$R_{\text{EN}}, R_{\text{SEL}}$	EN, SEL Pulldown Resistance	V_{EN} or $V_{SEL} < V_{IL}$, Disabled			500		kΩ			
I _{RVS}	Reverse Current (1)	V _{IN1} = V _{IN2} =0 V, V _{OUT} =5.5 V, EN=S	EL=0 V		2.6		μA			
Switching C	haracteristics ⁽²⁾									
t _{dON}	Turn-On Delay				210		μs			
t _R	VOUT Rise Time				350		μs			
T_{dHL}	High-low Delay ⁽¹⁾				3		μs			
T_{fHL}	High-low Fall Time (1)		o) (6		μs			
V _{droop}	Voltage Droop ⁽¹⁾		V _{IN1} = 5.0 V, V _{IN2} = 3.3V		160		mV			
T _{dLH}	Low-high Delay ⁽¹⁾	R _L =150Ω, C _{OUT} =1.0 μF			7		μs			
T _{rLH}	Low-high Rise Time (1)	1			4		μs			
t _{dOFF}	Turn-Off Delay ⁽¹⁾	1			18		μs			
t⊧	VOUT Fall Time ⁽¹⁾	-			350		μs			

ot production tested. 1. By design; characterized, not 2. $t_{ON} = t_{dON} + t_R$, $t_{OFF} = t_{dOFF} + t_F$

TIMING DIAGRAM and TRUTH TABLE


INTEGRATED POWER

0	0	Both switches are off	High-Z
0	1	Auto-Input selection. Vout is connected to a higher input source automatically	Higher Input between V_{IN1} and $~V_{\text{IN2}}$
1	0	Only V _{IN1} is selected	V _{IN1}
1	1	Only V _{IN2} is selected	V _{IN2}

 Table 1.
 Truth Table of Input Source Selection

TYPICAL PERFORMANCE CHARACTERISTICS

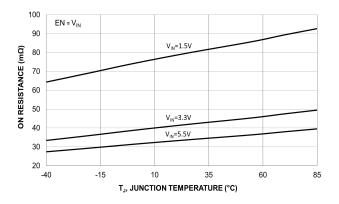
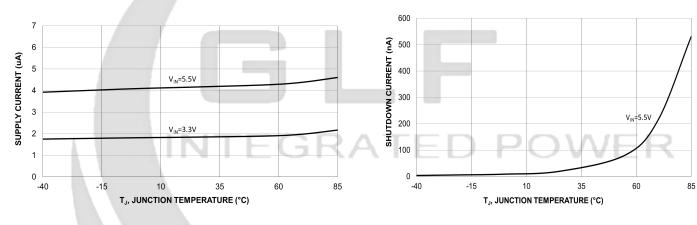




Figure 5. On-Resistance vs. Temperature

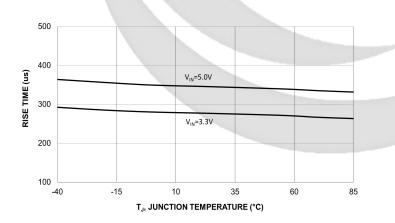


Figure 7. Shutdown Current vs. Temperature

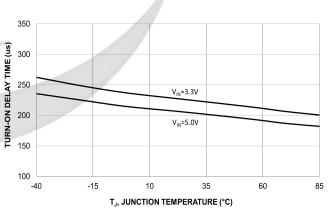
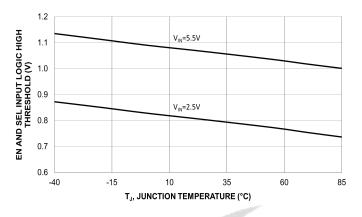



Figure 9. Turn-On Delay Time vs. Temperature

INTEGRATED POWER

Figure 10. EN and SEL Input Logic High Threshold Vs. Temperature

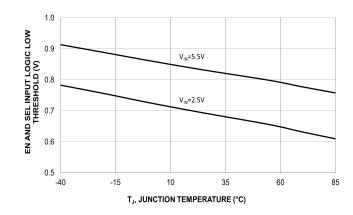


Figure 11. EN and SEL Input Logic Low Threshold Vs. Temperature

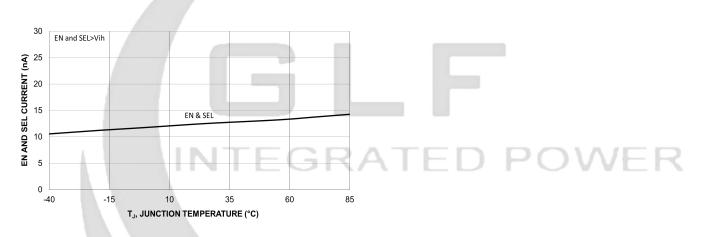
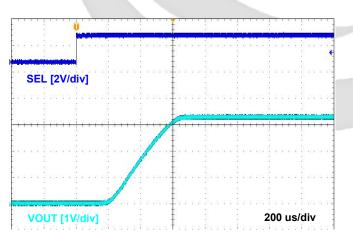
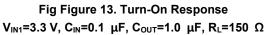
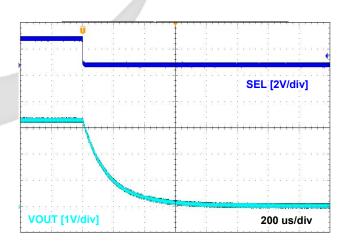
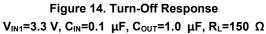






Figure 12. EN and SEL Current vs. Temperature

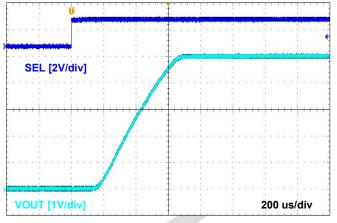


Fig Figure 15. Turn-On Response V_{IN1}=5.0 V, C_{IN}=0.1 \ \mu\text{F}, C_{OUT}=1.0 \ \mu\text{F}, R_{L}=150 \ \Omega

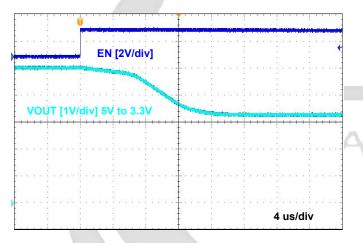


Figure 17. V_{OUT} Switchover from 5V to 3.3V V_{IN1}=5.0 V, V_{IN2}=3.3 V C_{IN}=1.0 μ F, C_{OUT}=1.0 μ F, R_L=150 Ω

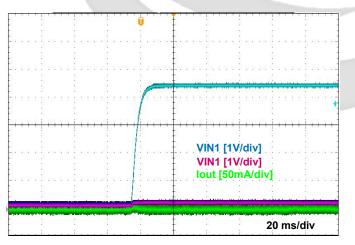


Figure 19. Reverse Current Blocking When Disabled $V_{IN1} = V_{IN2} = 0$ V, $V_{OUT} = 0$ V to 4.5 V, $C_{IN} = 1.0$ µF, $C_{OUT} = 1.0$ µ F, EN=SEL=0 V

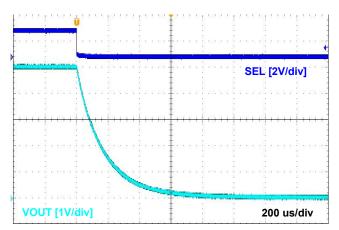


Figure 16. Turn-Off Response VIN1=5.0 V, CIN=0.1 μ F, COUT=1.0 μ F, RL=150 Ω

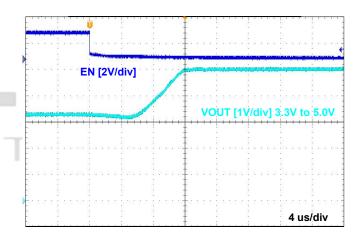
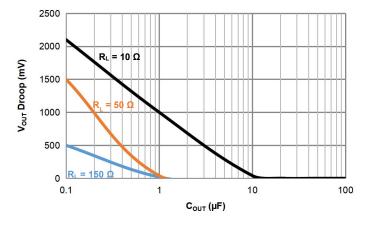



Figure 18. V_{OUT} Switchover from 3.3V to 5V V_{IN1} =5.0 V, V_{IN2} =3.3 V C_{IN} =1.0 μ F, C_{OUT} =1.0 μ F, R_L =150 Ω

POWER

INTEGRATED

Figure 20. Output Voltage Droop at Switching Over from V_{IN1} (5V) to V_{IN2} (3V)

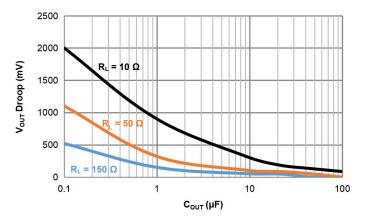


Figure 21. Output Voltage Droop at Switching Over from V_{IN2} (3V) to V_{IN1} (5V)

APPLICATION INFORMATION

The GLF74520 is a fully integrated 2.5 A Power Mux with a fixed slew rate control to limit the inrush current during device turn on. The GLF74520 also has a wide voltage operating range from 1.5 V to 5.5 V. In the off state, the GLF74520 consumes very low leakage current to avoid unwanted power drain from limited input power supplies. The GLF74520 utilizes a chip scale technology package with 6 bumps in a 0.97 mm x 1.47 mm x 0.55 mm package size with a 0.55 mm bump pitch.

Input Source Selection

By changing the state of the SEL and EN pins, the GLF74520 offers the automatic, as well as the manual input selection mode. In each mode, the V_{OUT} connects to one input source.

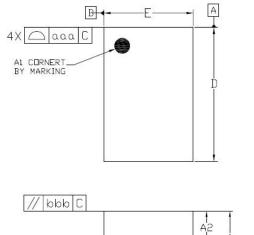
Input Capacitor

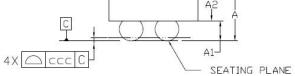
A capacitor is recommended to be placed close to the V_{IN} pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

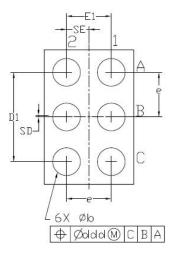
Output Capacitor

An output capacitor is recommended to minimize voltage undershoot on the output pin during the transition when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{OUT} capacitor should be placed close to the V_{OUT} and GND pins.

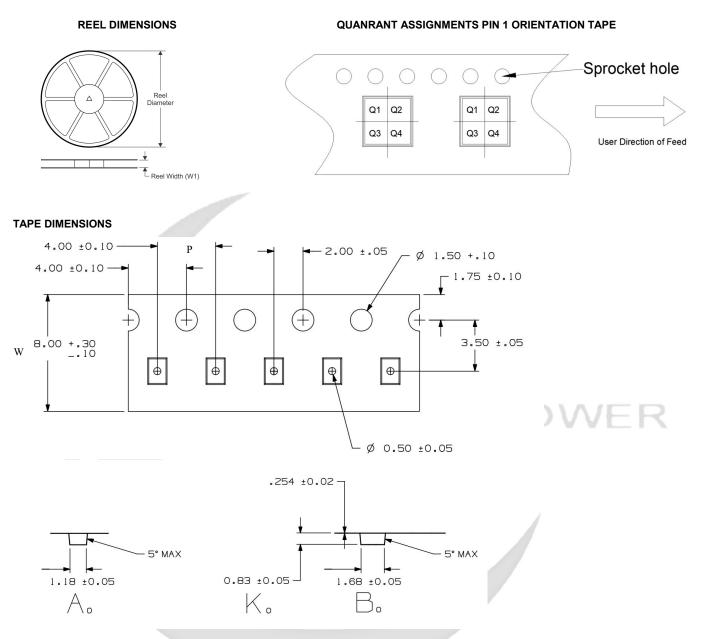
Reverse Current Blocking


The GLF74520 also prevents the reverse current from the output voltage when both switches are turned off at EN = SEL = 0 V.


Board Layout


All traces should be as short as possible to minimize parasitic inductance effect. Wide traces for V_{IN}, V_{OUT}, and GND will help reduce signal degradation and parasitic effects during dynamic operations as well as improve the thermal performance at high load current.

PACKAGE OUTLINE


	Dimens	ional R	ef.			
REF.	Min.	Nom.	Max.			
А	0.500	0.550	0.600			
A1	0.225	0.250	0.275			
A2	0.275	0.300	0.325			
D	1.460	1.470	1.485			
Е	0.960	0.970	0.985			
D1	0.950	1.000	1.050			
E1	0.450	0.500	0.550			
b	0.260	0.310	0.360			
е	0.500 BSC					
SD	0	.000 BSC				
SE	0	.250 BSC				
Τc	ol, of Fo	rm&Po:	sition			
aaa		0.10				
bbb		0.10				
000		0.05				
ddd		0.05				

Notes

AU DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

TAPE AND REEL INFORMATION

INTEGRATED POWER

Device	Package	Pins	SPQ	Reel Diameter(mm)	Reel Width W1	A0	В0	К0	Р	w	Pin1
GLF74520	WLCSP	6	3000	180	9	1.18	1.68	0.83	4	8	Q1

Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

SPECIFICATION DEFINITIONS

Document Type	Meaning	Product Status	
Target Specification			
Preliminary Specification	This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production of the device in question.	Qualification	
Product Specification	This document represents the anticipated production performance characteristics of the device.	Production	

DISCLAIMERS

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, misuse, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.