

## **Integrated Load Switch with Deep Sleep Mode**

**Product Specification** 

### **DESCRIPTION**

The GLF76321 / GLF76321T is an ultra-thin, ultra-efficient  $I_QSmart^{TM}$  load switch with an integrated deepsleep timer for wearables and IoT devices.

The /SRO pin enables a whole system to enter ultradeep sleep power conservation mode by disconnecting the system from the battery charge, with ultra-low standby current of 7nA typical. With the switch placed between a battery and system, this switch can help to significantly extend system battery life in mobile devices during shipping or periods of extended off time.

The part supports two methods for entering the deep sleep: supporting both user and interrupt initiated events. Deep sleep can be initiated or exited by either holding the SRO pin low for a predefined delay time (ideal for user control) or by providing a rising edge signal to the OFF pin (ideal for logic or interrupt control).

To exit the deep sleep, the user can hold down the /SRO pin to ground for 1.3 seconds, or simply connect a charger adapter to trigger the Wake pin.

The GLF76321 / GLF76321T helps to reduce power consumption with the best in class  $R_{ON}$  and a breakthrough on state  $I_{\rm Q}$  of only 3nA typical when the switch is on.

The GLF76321 / GLF76321T integrated 1ms slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switching can generate high inrush currents that result in voltage droop and/or bus reset events, the GLF slew rate control specifically limits inrush currents during turn-on to minimize voltage droop. The output discharge functions makes output voltage off quickly during the reset period.

The GLF76321 is available in 0.97mm x 1.47mm x 0.55mm wafer level chip scale package (WLCSP). The GLF76321T is ultra-thin: 0.35mm Typ, 0.4mm Max.

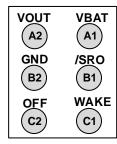
### **FEATURES**

Ultra-Low I<sub>SD</sub>: 7 nA Typ @ 3.6VBAT
 Ultra-Low I<sub>Q</sub>: 3 nA Typ @ 3.6VBAT
 Low R<sub>ON</sub>: 31 mΩ Typ @ 3.6VBAT

I<sub>OUT</sub> Max : 2A

• Wide Input Range: 1.5V to 5.5V

6Vabs max


- Deep Sleep Mode by /SRO and OFF Pins
  Disconnect the downstream system from the
  battery source
- Integrated Delay Time(Hold Time) to Deep Sleep, 7 s
- Turn-Off Delay Time, 7 s
- Controlled Output Rise Time: 1ms at 3.6VBAT
- Integrated Output Discharge Switch When Disabled
- Operating Temperature Range: -40 to 85°C
- HBM: 6kV, CDM: 2kV
- Ultra-Small: 0.97mm x 1.47mm WLCSP
- Ultra-Thin on GLF76321T: **0.35mm Typ**., 0.4mm

### **APPLICATIONS**

- Wearables
- IoT Devices
- Medical Devices

### **PACKAGE**

| VBAT | VOUT |
|------|------|
| (A1) | (A2) |
| /SRO | GND  |
| (B1) | (B2) |
| WAKE | OFF  |
| (C1) | (C2) |



**TOP VIEW** 

**BOTTOM VIEW** 

0.97mm x 1.47mm x 0.55mm WLCSP 0.97mm x 1.47mm x 0.35mm Ultra-Thin WLCSP

## **DEVICE OPTIONS / PACKAGING INFORMATION**

| Part Number | Туре                | Top<br>Mark | /SRO<br>Hold<br>Time | Output<br>Discharge                         | Package                                         | Availability                  | Tape and Reel<br>Packaging |
|-------------|---------------------|-------------|----------------------|---------------------------------------------|-------------------------------------------------|-------------------------------|----------------------------|
| GLF76320    |                     | SQ          |                      | NA                                          | 0.97mm x 1.47mm x<br>0.55mm WLCSP               | On Request                    |                            |
| GLF76321    | Deep<br>Sleep after | SF          | 7 sec                | 85Ω 0.97mm x 1.47mm x 0.55mm WLCSP Released |                                                 | 3000 Pieces<br>on 7 inch reel |                            |
| GLF76321T   | 7 sec               | -           |                      | 85Ω                                         | 0.97mm x 1.47mm x<br>0.35mm Ultra-Thin<br>WLCSP | Released                      | on / monreel               |

## **APPLICATION DIAGRAM**

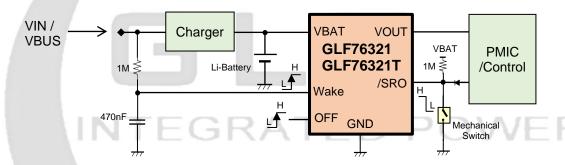



Figure 1. Typical Application with Standalone Charger IC

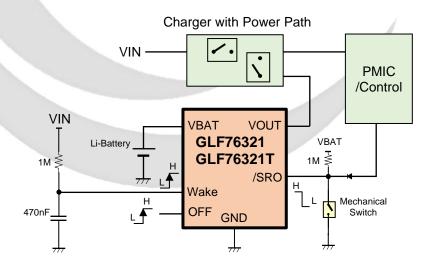



Figure 2. Typical Applications with Charger IC with Power Path and PMIC

## **FUNCTIONAL BLOCK DIAGRAM**

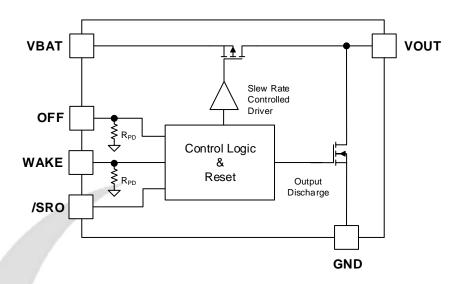



Figure 3. Functional Block Diagram

## **PIN CONFIGURATION**

### PIN DEFINITION

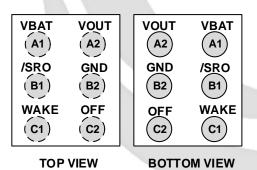



Figure 4. 0.97mm x 1.47mm x 0.55mm WLCSP 0.97mm x 1.47mm x 0.35mm Ultra-Thin WLCSP

| Pin# | Name | Description                                                                                                                                                                                                                                      |
|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A1   | VBAT | Switch Input. VBAT pin is connected to the positive input of an external battery.                                                                                                                                                                |
| A2   | VOUT | Switch Output.                                                                                                                                                                                                                                   |
| B1   | /SRO | Reset Input or Power-On. Active Low. It needs an external pull-up resistor. It is typically connected to the center between an external pull-up resistor which is directly tied with the battery and a mechanical key button on a device.        |
| B2   | GND  | Ground                                                                                                                                                                                                                                           |
| C1   | WAKE | System Wake Input. It is triggered by the rising edge signal to change the main switch from off to on-state. It has an internal pull-down resistance, $10M\Omega$ Typ. to keep the WAKE pin grounded. No need an external pull-down resistor.    |
| C2   | OFF  | Main Switch Off Input. It is triggered by the rising edge signal to change the main switch from on to off-state. It has an internal pull-down resistance, $10M\Omega$ Typ. to keep the OFF pin grounded. No need an external pull-down resistor. |

## **ABSOLUTE MAXIMUM RATINGS**

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol           | Parameter                                  |                                   | Min. | Max. | Unit |
|------------------|--------------------------------------------|-----------------------------------|------|------|------|
| VBAT, VOUT       | Each Pin Voltage Range to GND              |                                   | -0.3 | 6    | V    |
| /SRO, WAKE, OFF  | Each Pin Voltage Range                     |                                   |      | 6    | V    |
| Іоит             | Maximum Continuous Switch Current          |                                   |      | 2    | Α    |
| P <sub>D</sub>   | Power Dissipation at T <sub>A</sub> = 25°C |                                   |      | 1.2  | W    |
| T <sub>STG</sub> | Storage Junction Temperature               |                                   |      | 150  | °C   |
| T <sub>A</sub>   | Operating Temperature Range                |                                   | -40  | 85   | °C   |
| θја              | Thermal Resistance, Junction to Ambient    |                                   |      | 85   | °C/W |
| FCD              | Electrostatic Discharge Canability         | Human Body Model, JESD22-A114     | 6    |      | 147  |
| ESD              | Electrostatic Discharge Capability         | Charged Device Model, JESD22-C101 | 2    |      | kV   |

## **RECOMMENDED OPERATING CONDITIONS**

| Symbol          | Parameter                       | Min. | Max. | Unit |
|-----------------|---------------------------------|------|------|------|
| VBAT, VOUT      | Supply Input and Output Voltage | 1.5  | 5.5  | V    |
| /SRO, WAKE, OFF | Each Pin Voltage Range          | 0    | 5.5  | V    |
| TA              | Ambient Operating Temperature   | -40  | +85  | °C   |

## **ELECTRICAL CHRACTERISTICS**

Values are at VBAT = 3.6V and  $T_A = 25^{\circ}C$  unless otherwise noted.

| Symbol               | Parameter                                  | Conditions                                                                       |                   |     | Тур. | Max.    | Units |
|----------------------|--------------------------------------------|----------------------------------------------------------------------------------|-------------------|-----|------|---------|-------|
| Basic Ope            | ration                                     |                                                                                  |                   |     |      |         |       |
| Ιq                   | Quiescent Current                          | VBAT = /SRO = 3.6V, WAKW = OFF = GND<br>I <sub>OUT</sub> = 0mA, Load Switch = On |                   |     | 3    |         |       |
|                      | Charle Design Comment                      | VBAT=3.6V, VOUT=GND,                                                             | Load Switch = Off |     | 7    | 20      | nA    |
| I <sub>SD</sub>      | Shut Down Current                          | VBAT=4.2V, VOUT=GND, Load Switch = Off                                           |                   |     | 9    |         | •     |
|                      |                                            | VBAT=5.5V, I <sub>OUT</sub> = 500mA                                              | Ta=25°C           |     | 27   |         |       |
|                      |                                            | VBA1=3.5V, 1001= 300111A                                                         | Ta=85°C (1)       |     | 32   |         | •     |
|                      |                                            | VDAT 4.2V I 500 m A                                                              | Ta=25°C           |     | 29   | 31      |       |
| 5                    | 0 0 11                                     | VBAT=4.2V, I <sub>OUT</sub> = 500mA                                              | Ta=85°C (1)       |     | 35   |         |       |
| R <sub>ON</sub>      | On-Resistance                              | VDAT 2 CV 1 500 A                                                                | Ta=25°C           |     | 31   | 33      | mΩ    |
|                      |                                            | VBAT=3.6V, I <sub>OUT</sub> = 500mA                                              | Ta=85°C (1)       |     | 37   |         | 1     |
|                      |                                            | VBAT=3.0V, IouT= 300mA                                                           | Ta=25°C           |     | 34   | 36      |       |
|                      |                                            | VBAT=1.5V, IouT= 300mA                                                           | Ta=25°C           |     | 70   |         |       |
| Rosc                 | Output Discharge Resistance                | VOUT = Off, IFORCE= 10mA                                                         |                   | 70  | 85   | 100     | Ω     |
| VIH                  | Input Logic High Voltage (2)               | VBAT=1.5-5.5V                                                                    |                   | 1.2 |      |         | V     |
| $V_{IL}$             | Input Logic Low Voltage (2)                | VBAT=1.5-5.5V                                                                    |                   |     |      | 0.5     | V     |
| R <sub>PD</sub>      | Pull-down Resistance on OFF and WAKE       | VBAT=5.5V                                                                        |                   |     | 10   | R       | МΩ    |
| Power On             | (Load Switch Turn-On) and Deep             | Sleep Timing by /SRO (1)                                                         |                   |     |      | - 1 - 4 |       |
| tvon                 | Turn-On Delay Time(Hold Time)              |                                                                                  |                   |     | 1.3  |         |       |
| t <sub>Slp-Dly</sub> | Delay Time(Hold Time) before<br>Deep Sleep | VBAT=3.6V, $R_L = 150\Omega$ , $C_L$                                             | _ = 10uF          |     | 7    |         | s     |
| Power On             | (Load Switch Turn-On) Timing by            | WAKE (1)                                                                         |                   | /   |      |         |       |
| $t_{dON}$            | Turn-On Delay                              |                                                                                  |                   |     | 0.8  |         |       |
| t <sub>R</sub>       | VOUT Rise Time                             | VBAT=3.6V, R <sub>L</sub> = 150Ω, C <sub>L</sub> = 10uF                          |                   |     | 1    |         | ms    |
| ton                  | Turn-On Time (2)                           |                                                                                  |                   |     | 1.8  |         |       |
| Power Off            | (Load Switch Turn-Off) by OFF (1)          |                                                                                  |                   | ı   | 1    | I       |       |
| t <sub>SD</sub>      | Delay to Turn Off Load Switch              |                                                                                  |                   |     | 7    |         | S     |
| t <sub>F</sub>       | VOUT Fall Time                             | VBAT=3.6V, $R_L = 150 \Omega$ , $C$                                              | L = 10uF          |     | 1    |         | ms    |
| toff                 | Turn Off Time (3)                          |                                                                                  |                   |     | 7    |         | s     |

Notes:

- By design; characterized, not production tested.
   Input pins are /SRO, OFF, and WAKE.
- 3.  $t_{ON} = t_{dON} + t_R$ ,  $t_{OFF} = t_{SD} + t_F$

**Integrated Load Switch with Deep Sleep Mode** 

## TIMING DIAGRAMS AND INPUT CONDITION

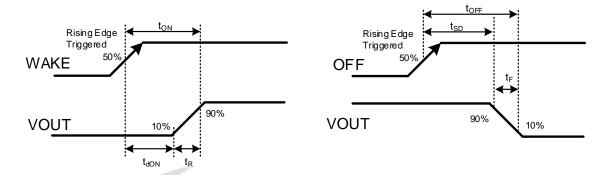



Figure 5. Power On by WAKE Pin

Figure 6. Power Off by OFF Pin

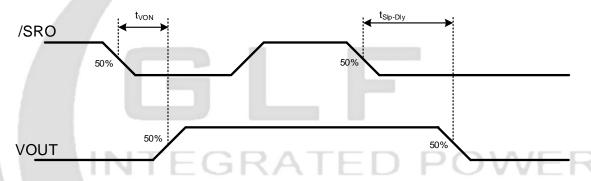
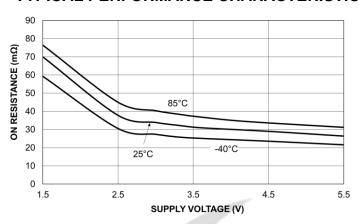



Figure 7. Power On and Deep Sleep by /SRO Pin

Table 1. Pin Default State With Input Power Source

| Pin Name      | /SRO | WAKE | OFF | VOUT |
|---------------|------|------|-----|------|
| Default State | 1    | 0    | 0   | GND  |

Notes: 1=Logic High, 0=Logic Low, The VOUT=GND means the internal load switch is off.


**Table 2. Input Conditions and VOUT** 

| Function           | /SRO                                               | WAKE                                    | OFF                                     | Delay Time(Hold time)        | VOUT Action |
|--------------------|----------------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|-------------|
| Power-On           | High to Low & Hold for tvon=1.3 s                  | Х                                       | Х                                       | t <sub>VON</sub> =1.3 s      | VOUT=VBAT   |
|                    | High                                               | Low to High<br>Rising Edge<br>Triggered | Х                                       | t <sub>dON</sub> =0.8 ms (2) | VOUT=VBAT   |
| Power-Off          | High to Low & Hold for $t_{Slp-Dly} = 7 \text{ s}$ | Х                                       | Х                                       | t <sub>Slp-Dly</sub> = 7 s   | VOUT to GND |
| into Deep<br>Sleep | High                                               | Low                                     | Low to High<br>Rising Edge<br>Triggered | t <sub>SD</sub> = 7 s        | VOUT to GND |

Notes: 1. X = Don't Care

<sup>2.</sup> The  $t_{dON}$  can be longer with an external capacitor on the WAKE pin due to a RC time-constant to the trigger level of rising edge.

## TYPICAL PERFORMANCE CHARACTERISTICS



90 80 ON RESISTANCE (mQ) 70  $V_{IN} = 1.5V$ 60 50 40  $V_{IN} = 3.3V$ 30  $V_{IN} = 5.5V$ 20 10 0 -40 -15 85 T<sub>J</sub>, JUNCTION TEMPERATURE (°C)

Figure 8. On-Resistance vs. Input Voltage



Figure 9. On-Resistance vs. Temperature

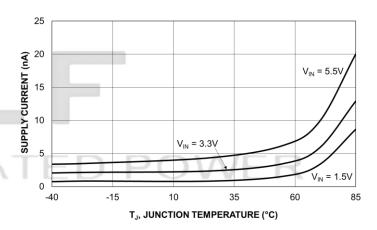



Figure 10. Quiescent Current vs. Input Voltage

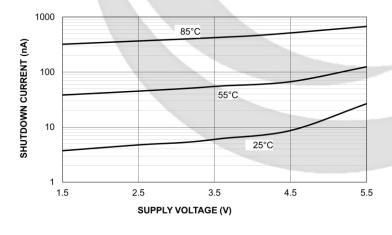
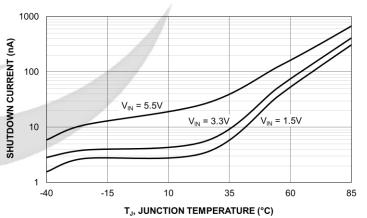



Figure 11. Quiescent Current vs. Temperature



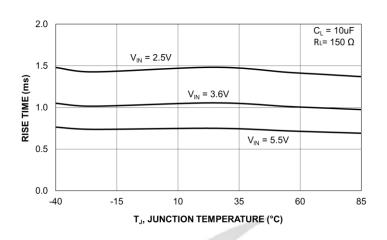


Figure 12. Shut Down Current vs. Input Voltage

Figure 13. Shut Down current vs. Temperature

**POWER** 

# GLF76321 / GLF76321T

## **Integrated Load Switch with Deep Sleep Mode**



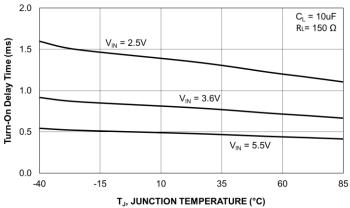



Figure 14. Vout Rise Time vs. Temperature

/SRO[2V/div]

/SRO[2V/div]

/SRO[2V/div]

/SRO[2V/div]

Figure 15. Turn-On Delay Time vs. Temperature

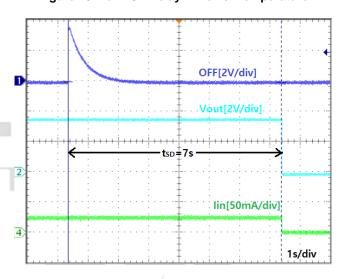



Figure 16. Delay time before Deep Sleep, tsip-Dly

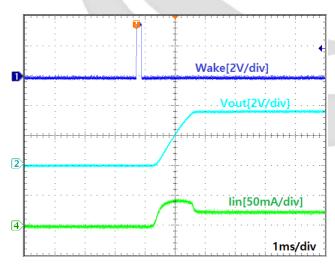



Figure 18. Turn-On Response  $V_{IN}=3.6V$ ,  $C_{IN}=10uF$ ,  $C_{L}=10uF$ ,  $R_{L}=150\Omega$ 

Figure 17. Turn-Off Response, tsD

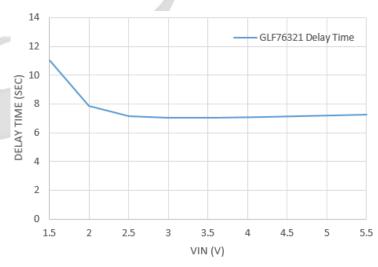



Figure 19. Delay Time of tsp and tsp-Dly vs. Input Voltage  $C_{IN}=10uF, C_L=10uF, R_L=150\Omega$ 

**Integrated Load Switch with Deep Sleep Mode** 

#### APPLICATION INFORMATION

INTEGRATED POWER

The GLF76321 / GLF76321T is an integrated load switch with the deep sleep mode which is optimized to significantly extend the battery life in mobile devices during long period of shipping or off time. Typical applications are shown in Fig.1 and Fig. 2.

#### Power On

There are two methods to enable the main switch of GLF76321 / GLF76321T to wake up the system. At this power-on process, the deep sleep function with /SRO pin is disabled. The Fig.20 shows the power-on mode by /SRO and WAKE pins. The output discharge switch

#### 1) /SRO pin

When the main switch of GLF76321 / GLF76321T is turned off and a system is disabled, holding the /SRO pin low for the preset delay time or hold time, 1.3 seconds, turns on the main switch to wake up the downstream system.

#### 2) WAKE pin

When a high signal is applied to the WAKE pin, the GLF76321 / GLF76321T turns on the main switch to connect the battery power to the downstream system. The Wake pin is initiated on a rising edge of a high signal. The  $t_{dON}$  of timing can be longer due to a RC time-constant to the trigger level of rising edge of WAKE pin. The WAKE pin has an internal pull-down resistance which is typically 10M Ohm to remain off state when no signal is asserted.

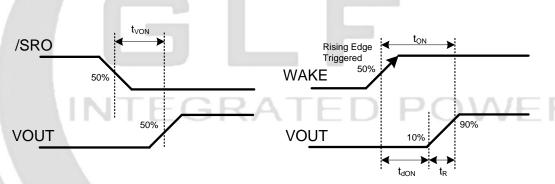



Figure 20. Power-On Mode by /SRO and WAKE

## **Deep Sleep Function**

The GLF76321 / GLF76321T allows a mobile or wearable device to enter the deep sleep mode by disconnecting the downstream system from the battery charge and consuming 7nA typical standby current themselves. Two methods to activate the deep sleep mode are offered. The Fig. 21 shows how to enter the deep sleep mode by either /SRO or OFF pin. The output discharge switch of GLF76321 / GLF76321T is turned on to quickly bring VOUT down to GND when the main switch is turned off by both /SRO and OFF pins.

#### 1) /SRO pin

When the main switch of GLF76321 / GLF76321T is turned on and then a downstream system operates, holding the /SRO pin low for the preset delay time or hold time turns off the main switch to cut off the supply power from the battery and the internal output discharge switch is turned on to make VOUT down to GND quickly. The GLF76321 / GLF76321T consumes ultra-low standby leakage current to keep the battery charge during the sleep mode. If the /SRO pin gets back to the high state within the preset delay time or hold time, the VOUT remains in on state. The /SRO pin needs a pull-up resistor to be tied to the battery to maintain the high state during the normal operation. It can be connected to an external key button on a device so that users can use it to enter the sleep mode as well as to reset the system. The preset delay or hold time, tsip-ply is 7 seconds.

### 2) OFF pin

When the OFF pin is triggered by a rising edge of the signal from low to high, the main switch of GLF76321 / GLF76321T is turned off in the preset delay time and enters the sleep mode. The output discharge switch is turned on to make VOUT down to GND quickly. Note that if the /SRO pin action of going low and high is detected within the preset delay time (tsd), the turn-off process is terminated and the VOUT remains in on state. To initiate

## **Integrated Load Switch with Deep Sleep Mode**

the OFF pin again, the OFF pin needs to return to low and then a rising edge signal is asserted. The OFF pin has an internal pull-down resistor which is typically 10M Ohm to remain low state when no signal is asserted. The preset delay time, t<sub>SD</sub> is 7 seconds.

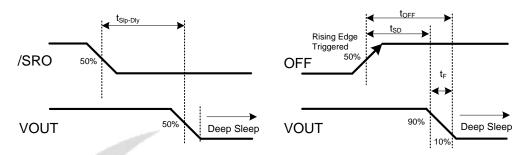



Figure 21. Deep Sleep Mode by /SRO and OFF

## **Input Priority**

The GLF76321 / GLF76321T supports two different methods for turning on and off the main switch with /SRO, OFF, and WAKE pins. When two input pins are asserted at the same time or in any sequence, a higher priority input pin is chosen to be asserted and a lower priority input is ignored to avoid unnecessary conflicts.

| Input | Priority (1 : Highest) |
|-------|------------------------|
| /SRO  | MILL                   |
| WAKE  | 2                      |
| OFF   | 3                      |

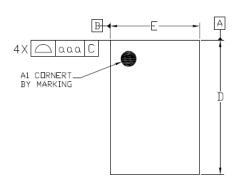
**Table 3. Pin Priority** 

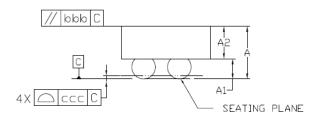
## **Output Discharge Function**

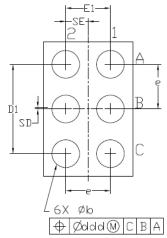
The GLF76321 / GLF76321T has an internal discharge switch on VOUT. It is activated to discharge an output capacitor quickly when the main switch is turned off. During the sleep mode, the discharge switch remains in the on state holding the VOUT to GND. When the main switch is enabled, the output discharge switch is turned off.

#### **Input Capacitor**

A 0.1uF capacitor is recommended to be placed close to the VBAT pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.


### **Output Capacitor**


A 0.1uF output capacitor is recommended to mitigate voltage undershoot on the output pin when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances exist, use of an output capacitor can improve output voltage stability and system reliability. The Cout capacitor should be placed close to the VOUT and GND pins.

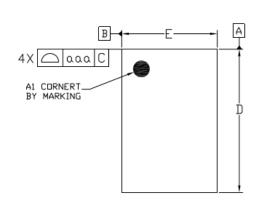


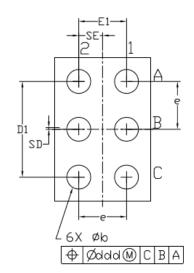

# **Integrated Load Switch with Deep Sleep Mode**

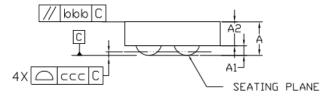
## **PACKAGE OUTLINE (GLF76321)**









|      | Dimens    | ional R | ef.    |  |  |  |
|------|-----------|---------|--------|--|--|--|
| REF. | Min.      | Nom.    | Max.   |  |  |  |
| Α    | 0.500     | 0.550   | 0.600  |  |  |  |
| A1   | 0.225     | 0.250   | 0.275  |  |  |  |
| A2   | 0.275     | 0.300   | 0.325  |  |  |  |
| D    | 1.460     | 1.470   | 1.485  |  |  |  |
| Е    | 0.960     | 0.970   | 0.985  |  |  |  |
| D1   | 0.950     | 1.000   | 1.050  |  |  |  |
| E1   | 0.450     | 0.500   | 0.550  |  |  |  |
| Ь    | 0.260     | 0.310   | 0.360  |  |  |  |
| е    | 0         | .500 BS | С      |  |  |  |
| SD   | 0         | .000 BS | C      |  |  |  |
| SE   | 0         | .250 BS | C      |  |  |  |
| To   | ol, of Fo | rm&Pos  | sition |  |  |  |
| 999  |           | 0.10    |        |  |  |  |
| bbb  |           | 0.10    |        |  |  |  |
| 333  |           | 0.05    |        |  |  |  |
| ddd  |           | 0.05    |        |  |  |  |


### Notes

- 1, ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

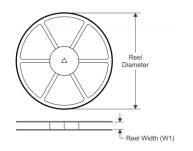
## **ULTRA-THIN PACKAGE OUTLINE (GLF76321T)**

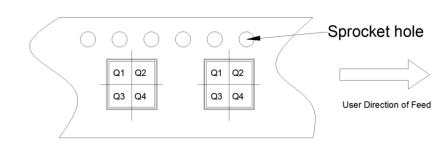






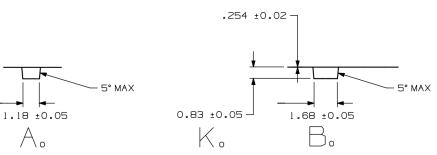
| Dimensional Ref.      |       |         |       |  |  |  |  |
|-----------------------|-------|---------|-------|--|--|--|--|
| REF.                  | Min.  | Nom.    | Max.  |  |  |  |  |
| Α                     | 0.300 | 0.350   | 0.400 |  |  |  |  |
| A1                    | 0.075 | 0.100   | 0.125 |  |  |  |  |
| A2                    | 0.225 | 0.250   | 0.275 |  |  |  |  |
| D                     | 1.460 | 1.470   | 1.485 |  |  |  |  |
| Ε                     | 0.960 | 0.970   | 0.985 |  |  |  |  |
| D1                    | 0.950 | 1.000   | 1.050 |  |  |  |  |
| E1                    | 0.450 | 0.500   | 0.550 |  |  |  |  |
| Ь                     | 0.210 | 0.250   | 0.290 |  |  |  |  |
| е                     | 0     | .500 BS | C     |  |  |  |  |
| SD                    | 0     | .000 BS | C     |  |  |  |  |
| SE                    | 0     | .250 BS | C     |  |  |  |  |
| Tol. of Form&Position |       |         |       |  |  |  |  |
| aaa                   |       | 0.10    |       |  |  |  |  |
| bbb                   |       | 0.10    |       |  |  |  |  |
| ccc                   |       | 0.05    |       |  |  |  |  |
| ddd                   |       | 0.05    |       |  |  |  |  |


### Notes


- 1. AU DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1994.

## TAPE AND REEL INFORMATION

#### **REEL DIMENSIONS**


#### **QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE**



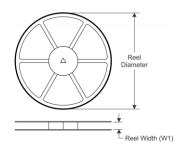


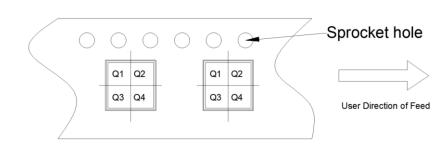
#### **TAPE DIMENSIONS**



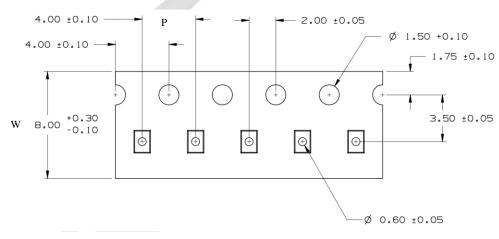


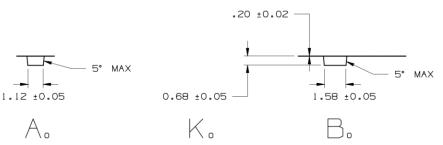
| Device   | Package | Pins | SPQ  | Reel Diameter(mm) | Reel<br>Width W1 | Α0   | В0   | K0   | Р | w | Pin1 |
|----------|---------|------|------|-------------------|------------------|------|------|------|---|---|------|
| GLF76321 | WLCSP   | 6    | 3000 | 180               | 9                | 1.18 | 1.68 | 0.83 | 4 | 8 | Q1   |


#### Remark:


- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers

## TAPE AND REEL INFORMATION


#### **REEL DIMENSIONS**


#### **QUADRANT ASSIGNMENTS PIN 1 ORIENTATION TAPE**





#### **TAPE DIMENSIONS**





| Device    | Package | Pins | SPQ  | Reel Diameter(mm) | Reel<br>Width W1 | Α0   | В0   | K0   | Р | w | Pin1 |
|-----------|---------|------|------|-------------------|------------------|------|------|------|---|---|------|
| GLF76321T | WLCSP   | 6    | 3000 | 180               | 9                | 1.12 | 1.58 | 0.68 | 4 | 8 | Q1   |

#### Remark:

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- C0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P: Pitch between successive cavity centers



**Integrated Load Switch with Deep Sleep Mode** 

## **SPECIFICATION DEFINITIONS**

| Document<br>Type             | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                    | Product Status          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Target<br>Specification      | This is a target specification intended to support exploration and discussion of critical needs for a proposed or target device. Spec limits including typical, minimum, and maximum values are desired, or target, limits. GLF reserves the right to change limits at any time without warning or notification. A target specification in no way guarantees future production or producability of the device in question. | Design /<br>Development |
| Preliminary<br>Specification | This is a draft version of a product specification. The specification is still under internal review and subject to change. GLF reserves the right to change the specification at any time without warning or notification. A preliminary specification in no way guarantees future production or producability of the device in question.                                                                                 | Qualification           |
| Product<br>Specification     | This document represents the anticipated production performance characteristics of the device.                                                                                                                                                                                                                                                                                                                             | Production              |

### **DISCLAIMERS**

Information in this document is believed to be accurate and reliable, however GLF assumes no liability for errors or omissions. Device performance may be impacted by testing methods and application use cases. Users are responsible to independently evaluate the applicability, usability, and suitability of GLF devices in their application. In no case will GLF be liable for incidental, indirect, or consequential damages associated with the use, mis-use, or sale of its product. Customers are wholly responsible to assure GLF devices meet their system level and end product requirements. GLF retains the right to change the information provided in this data sheet without notice.